Displaying all 18 publications

Abstract:
Sort:
  1. Chua LS, Abdul-Rahman N, Rosidi B, Lee CT
    Nat Prod Res, 2013 Mar;27(4-5):314-8.
    PMID: 22468741 DOI: 10.1080/14786419.2012.676552
    A water extraction method has been used to extract plant proteins from the roots of Eurycoma longifolia harvested from Perak and Pahang, Malaysia. On the basis of the spectroscopic Bradford assay, Tongkat Ali Perak and Pahang contained 0.3868 and 0.9573 mg mL(-1) of crude protein, respectively. The crude proteins were separated by one dimensional 15% sodium dodecyl sulphate polyacrylamide gel electrophoresis into two (49.8 and 5.5 kD) and four (49.8, 24.7, 21.1 and 5.5 kD) protein spots for Tongkat Ali Perak and Pahang, respectively. Isoleucine was present in the highest concentration significantly. Both plant samples showed differences in the mineral and trace element profiles, but the minerals calcium, magnesium and potassium were present in the highest concentration. The highly concerned toxic metals such as arsenic and lead were not detected.
    Matched MeSH terms: Plant Proteins/analysis*
  2. Berry SK
    J Sci Food Agric, 1980 Jul;31(7):657-62.
    PMID: 6779057
    Matched MeSH terms: Plant Proteins/analysis
  3. Lau BYC, Othman A
    PLoS One, 2019;14(8):e0221052.
    PMID: 31415606 DOI: 10.1371/journal.pone.0221052
    Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
    Matched MeSH terms: Plant Proteins/analysis*
  4. Tan HS, Jacoby RP, Ong-Abdullah M, Taylor NL, Liddell S, Chee WW, et al.
    Electrophoresis, 2017 04;38(8):1147-1153.
    PMID: 28198080 DOI: 10.1002/elps.201600506
    Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307.
    Matched MeSH terms: Plant Proteins/analysis*
  5. Jamil NAM, Rahmad N, Rosli NHM, Al-Obaidi JR
    Electrophoresis, 2018 12;39(23):2954-2964.
    PMID: 30074628 DOI: 10.1002/elps.201800185
    Wax apple is one of the underutilized fruits that is considered a good source of fibers, vitamins, minerals as well as antioxidants. In this study, a comparative analysis of the developments of wax fruit ripening at the proteomic and metabolomic level was reported. 2D electrophoresis coupled with MALDI-TOF/TOF was used to compare the proteome profile from three developmental stages named immature, young, and mature fruits. In general, the protein expression profile and the identified proteins function were discussed for their potential roles in fruit physiological development and ripening processes. The metabolomic investigation was also performed on the same samples using quadrupole LC-MS (LC-QTOF/MS). Roles of some of the differentially expressed proteins and metabolites are discussed in relation to wax apple ripening during the development. This is the first study investigating the changes in the proteins and metabolites in wax apple at different developmental stages. The information obtained from this research will be helpful in developing biomarkers for breeders and help the plant researchers to avoid wax apple cultivation problems such as fruit cracking.
    Matched MeSH terms: Plant Proteins/analysis
  6. Kok SY, Namasivayam P, Ee GC, Ong-Abdullah M
    J Plant Res, 2013 Jul;126(4):539-47.
    PMID: 23575803 DOI: 10.1007/s10265-013-0560-8
    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA.
    Matched MeSH terms: Plant Proteins/analysis
  7. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
    Matched MeSH terms: Plant Proteins/analysis*
  8. Lau BY, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US
    Protein J, 2016 Apr;35(2):163-70.
    PMID: 26993480 DOI: 10.1007/s10930-016-9655-0
    The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported.
    Matched MeSH terms: Plant Proteins/analysis
  9. Ngoh YY, Gan CY
    Food Chem, 2018 Nov 30;267:124-131.
    PMID: 29934146 DOI: 10.1016/j.foodchem.2017.04.166
    Five Pinto bean peptides with α-amylase and angiotensin converting enzyme (ACE) inhibitory activities were successfully identified using the integrated bioinformatics approach. By using PEAKS studio, 511 peptide sequences were first shortlisted based on their de novo sequence property and average local confidence (ALC) yield of ≥60%. Subsequently, only five peptides were found to have high potential (score ≥0.80) for contributing bioactivy. The important sites which were potentially bound by the peptides: (a) Trp58, Trp59, Tyr 62, Asp96, Arg195, Asp197, Glu233, His299, Asp300 and His305 for α-amylase; (b) His353, Ala354, His383, Glu384, His387, Glu411, Lys511, His513, Tyr520 and Tyr523 for ACE had corresponded to the catalytic and substrate binding sites of the two enzymes. A validation assay was then conducted and IC50 values were determined. The range of the values for α-amylase inhibitory activity was 10.03-23.33mM, whereas the values for ACE inhibitory activity were of 1.52-31.88μM.
    Matched MeSH terms: Plant Proteins/analysis
  10. Hassan H, Amiruddin MD, Weckwerth W, Ramli US
    Electrophoresis, 2019 01;40(2):254-265.
    PMID: 30370930 DOI: 10.1002/elps.201800232
    Palm oil is an edible vegetable oil derived from lipid-rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel-based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two-dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.
    Matched MeSH terms: Plant Proteins/analysis*
  11. Lee HX, Ahmad F, Saad B, Ismail MN
    Prep Biochem Biotechnol, 2017 Nov 26;47(10):998-1007.
    PMID: 28857669 DOI: 10.1080/10826068.2017.1365250
    Date fruits are well known to be very nutritious. Nevertheless, the protein contents of the fruit, particularly the seed and flesh, are still understudied, largely due to their difficult physical characteristics. This study was conducted to compare three different protein extraction methods which were the trichloroacetic acid (TCA)-acetone (TCA-A), phenol (Phe), and TCA-acetone-phenol (TCA-A-Phe), and to perform proteomic analysis on date palm seed and flesh. Phe extraction method showed the highest protein yields for both seed (8.26 mg/g) and flesh (1.57 mg/g). Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Phe, and TCA-A-Phe extraction methods were shown to be efficient in removing interfering compounds and gave well-resolved bands over a wide range of molecular weights. Following liquid chromatography-tandem mass spectrometry analysis, about 50-64% of extracted proteins were identified with known functions including those involved in glycolysis, Krebs cycle, defense, and storage. Phe protein extraction method was proven to be the optimal method for date flesh and seed.
    Matched MeSH terms: Plant Proteins/analysis*
  12. Tan HS, Liddell S, Ong Abdullah M, Wong WC, Chin CF
    J Proteomics, 2016 06 30;143:334-345.
    PMID: 27130535 DOI: 10.1016/j.jprot.2016.04.039
    Oil palm tissue culture is one way to produce superior oil palm planting materials. However, the low rate of embryogenesis is a major hindrance for the adoption of this technology in oil palm tissue culture laboratories. In this study, we use proteomic technologies to compare differential protein profiles in leaves from palms of high and low proliferation rates in tissue culture in order to understand the underlying biological mechanism for the low level of embryogenesis. Two protein extraction methods, namely trichloroacetic acid/acetone precipitation and polyethylene glycol fractionation were used to produce total proteins and fractionated protein extracts respectively, with the aim of improving the resolution of protein species using two-dimensional gel electrophoresis. A total of 40 distinct differential abundant protein spots were selected from leaf samples collected from palms with proven high and low proliferation rates. The variant proteins were subsequently identified using mass spectrometric analysis. Twelve prominent protein spots were then characterised using real-time polymerase chain reaction to compare the mRNA expression and protein abundant profiles. Three proteins, namely triosephosphate isomerase, l-ascorbate peroxidase, and superoxide dismutase were identified to be potential biomarker candidates at both the protein abundant and mRNA expression levels.

    BIOLOGICAL SIGNIFICANCE: In this study, proteomic analysis was used to identify abundant proteins from total protein extracts. PEG fractionation was used to reveal lower abundant proteins from both high and low proliferation embryogenic lines of oil palm samples in tissue culture. A total of 40 protein spots were found to be significant in abundance and the mRNA levels of 12 of these were assessed using real time PCR. Three proteins namely, triosephosphate isomerase, l-ascorbate peroxidase and superoxide dismutase were found to be concordant in their mRNA expression and protein abundance. Triosephosphate isomerase is a key enzyme in glycolysis. Both l-ascorbate peroxidase and superoxide dismutase play a role in anti-oxidative scavenging defense systems. These proteins have potential for use as biomarkers to screen for high and low embryogenic oil palm samples.

    Matched MeSH terms: Plant Proteins/analysis*
  13. Fujimoto Y, Suzuki Y, Kanaiwa T, Amiya T, Hoshi K, Fujino S
    J. Pharmacobio-dyn., 1983 Feb;6(2):128-35.
    PMID: 6306201
    The present research is on a milky sap obtained from the Antiaris toxicaria tree (Moraceae) which is called Upas or Ipoh in Indonesia. The crude sap was administered to anesthetized rats, and changes in electrocardiogram (ECG) and systemic blood pressure was observed. Biologically and pharmacologically active components were extracted from the crude sap by means of water-acetone solution. Based on the strength of chemical qualitative detection tests of the sap extract (SE), cardiac glycosides are supposed to be the main components. The SE inhibited the Na+-, K+-ATPase (EC 3.6.1.3) which was partially purified from guinea pig heart muscle. When the SE and, concurrently, authentic ouabain were applied to isolated frog heart muscles, the fall of twitch tension was observed after the increased tension on mechanograms. These facts suggest that the main components of the milky sap are cardiac glycosides, and glycosides affect Na+, K+-ATPase activity of muscle membrane and heart muscle contraction.
    Matched MeSH terms: Plant Proteins/analysis
  14. Koay SY, Gam LH
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Jul 15;879(22):2179-83.
    PMID: 21689998 DOI: 10.1016/j.jchromb.2011.05.041
    Orthosiphon aristatus is a traditionally used medicinal plant. In order to study the proteome of the plant, we have developed a simple plant protein extraction method by direct extraction of protein using a modified 2D-gel compatible tris-sucrose buffer followed by a double TCA-acetone precipitation. This method omitted the use of toxic phenol which is widely used in the studies of plants proteins. Moreover, it shortens the lengthy extraction procedure of phenol extraction and back-extraction method and therefore reduced the extraction time (by 2h) while increased in protein yields (by 50%). Comparison of the 2D-gel images of the two extracts revealed that >60 extra protein spots were detected in the extract of our current method. The method was applied on the leaves of O. aristatus collected from six geographical areas in Malaysia. The correlation coefficient of each replicate gels from the six areas ranged from 0.70 to 0.90 indicating good reproducibility of the method.
    Matched MeSH terms: Plant Proteins/analysis
  15. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
    Matched MeSH terms: Plant Proteins/analysis
  16. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Plant Proteins/analysis
  17. Tan XY, Misran A, Daim LDJ, Lau BYC
    Food Chem, 2021 May 01;343:128471.
    PMID: 33143964 DOI: 10.1016/j.foodchem.2020.128471
    Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage. Isoflavone reductase-like protein, S-adenosyl methionine synthase, and cysteine synthase isoform were up-regulated during frozen storage. The down-regulation of proteins in frozen durian pulps indicated that frozen storage has affected proteins in many ways, especially in their functions related to carbohydrate and energy metabolisms, cellular components, and transport processes. This study will enable future detailed investigations of proteins associated with quality attributes of durians to be studied.
    Matched MeSH terms: Plant Proteins/analysis*
  18. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Plant Proteins/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links