Displaying all 4 publications

Abstract:
Sort:
  1. Al-Alimi A, Taiyeb-Ali T, Jaafar N, Noor Al-hebshi N
    Biomed Res Int, 2015;2015:291305.
    PMID: 26351631 DOI: 10.1155/2015/291305
    AIM: Qat chewing has been reported to induce subgingival microbial shifts suggestive of prebiotic-like properties. The objective here was to assess the effect of qat chewing on a panel of classical and new putative periopathogens in health and periodontitis.
    MATERIALS AND METHODS: 40 qat chewers and 40 nonchewers, equally stratified by periodontal health status, were recruited. Taqman, real-time PCR was used to quantify total bacteria, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Parvimonas micra, Filifactor alocis, Synergistetes, and TM7s in pooled subgingival biofilm samples. Differences in microbial parameters between the study groups were analysed using ordinal regression.
    RESULTS: In health, the qat chewers harboured significantly lower relative counts of P. gingivalis, T. forsythia, Synergistetes, and TM7s after adjustment for multiple comparisons (P ≤ 0.007). At nominal significance level, they also carried lower counts of TM7s and P. micra (P ≤ 0.05). In periodontitis, the chewers had lower counts of all taxa; however, only T. denticola withstood correction for multiple comparisons (P ≤ 0.0063).
    CONCLUSIONS: Qat chewing is associated with lower proportions of periopathogens, particularly in subjects with healthy periodontium, which supports previous reports of its prebiotic-like properties. This potentially beneficial biological effect can be exploited by attempting to isolate the active fraction.
    Matched MeSH terms: Periodontium/microbiology*
  2. Jaffar N, Miyazaki T, Maeda T
    J Biomed Mater Res A, 2016 11;104(11):2873-80.
    PMID: 27390886 DOI: 10.1002/jbm.a.35827
    Biofilm formation of periodontal pathogens on teeth surfaces promotes the progression of periodontal disease. Hence, understanding the mechanisms of bacterial attachment to the dental surfaces may inform strategies for the maintenance of oral health. Although hydroxyapatite (HA) is a major calcium phosphate component of teeth, effect of biofilm formation on HA surfaces remains poorly characterized. In this study, biofilm-forming abilities by the periodontal pathogens Aggregatibacter actinomycetemcomitans Y4 and Porphyromonas gingivalis 381 were investigated on dense and porous HAs that represent enamel and dentin surfaces, respectively. These experiments showed greater biofilm formation on porous HA, but differing attachment profiles and effects of the two pathogens. Specifically, while the detachment of A. actinomycetemcomitans Y4 biofilm was observed, P. gingivalis 381 biofilm increased with time. Moreover, observations of HA morphology following formation of A. actinomycetemcomitans Y4 biofilm revealed gaps between particles, whereas no significant changes were observed in the presence of P. gingivalis 381. Finally, comparisons of calcium leakage showed only slight differences between bacterial species and HA types and may be masked by bacterial calcium uptake. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2873-2880, 2016.
    Matched MeSH terms: Periodontium/microbiology*
  3. Buzinin SM, Alabsi AM, Tan AT, Vincent-Chong VK, Swaminathan D
    ScientificWorldJournal, 2014;2014:232535.
    PMID: 25147841 DOI: 10.1155/2014/232535
    The association between diabetes mellitus and chronic periodontal disease has long been established. Most of the researches linking these two very common chronic diseases were based on type 2 diabetes mellitus and chronic periodontal disease. However, this study was conducted to investigate the association between type 1 diabetes and chronic periodontal disease in Malaysian subjects. Forty-one Malaysian subjects, of which 20 subjects were type 1 diabetics and with chronic periodontal disease (test group) and 21 subjects with only chronic periodontal disease (control group), were included in the study. Periodontal parameters and plaque samples for microbiological evaluation were done at baseline, 2 and 3 months after nonsurgical periodontal therapy. Blood samples were taken from only the test group and evaluated for HbA1c at baseline and 3 months after periodontal therapy. There were no statistically significant difference in periodontal parameters between groups (P>0.05) and no significant improvement in the level of HbA1c in the test group. Microbiological studies indicated that there were significant reductions in the levels of the tested pathogens in both groups. The results of our study were similar to the findings of several other studies that had been done previously.
    Matched MeSH terms: Periodontium/microbiology
  4. Joshi C, Bapat R, Anderson W, Dawson D, Hijazi K, Cherukara G
    Trends Cardiovasc Med, 2021 01;31(1):69-82.
    PMID: 31983534 DOI: 10.1016/j.tcm.2019.12.005
    BACKGROUND: Microbial translocation from inflamed periodontal pockets into coronary atheroma via systemic circulation is one of the proposed pathways that links periodontitis and myocardial infarction (MI). The purpose of this systematic review is to determine the reported prevalence of periodontal microorganisms in coronary atheroma and/or aspirated clot samples collected from MI patients with periodontal disease.

    METHODOLOGY: The "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines were followed. Six databases were systematically searched using Medical Subject Headings/Index and Entree terms. After a thorough screening, fourteen publications spanning over ten years (2007-2017) were eligible for this systematic review and meta-analysis.

    RESULTS: Out of 14 included studies, 12 reported presence of periodontal bacterial DNA in coronary atherosclerotic plaque specimens. Overall, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were the most frequently detected periodontal bacterial species. Meta-analysis revealed that the prevalence of P. gingivalis was significantly higher than A. actinomycetemcomitans in coronary atheromatous plaque samples. Apart from periodontal microbes, DNA from a variety of other microbes e.g. Pseudomonas fluorescens, Streptococcus species, Chlamydia pneumoniae were also recovered from the collected samples.

    CONCLUSION: Consistent detection of periodontal bacterial DNA in coronary atheroma suggests their systemic dissemination from periodontal sites. It should further be investigated whether they are merely bystanders or induce any structural changes within coronary arterial walls.

    Matched MeSH terms: Periodontium/microbiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links