Displaying all 10 publications

Abstract:
Sort:
  1. Wong SC, Ooi MH, Wong MN, Tio PH, Solomon T, Cardosa MJ
    J Neurol Neurosurg Psychiatry, 2001 Oct;71(4):552-4.
    PMID: 11561048
    Nipah virus is a newly discovered paramyxovirus transmitted directly from pigs to humans. During a large encephalitis outbreak in Malaysia and Singapore in 1998-9, most patients presented acutely. A 12 year old child is described who developed encephalitis 4 months after exposure to the virus. She was diagnosed by a new indirect IgG enzyme linked immunosorbent assay (ELISA), which is also described. The late presentation and IgG subclass responses had similarities to subacute sclerosing panencephalitis. Nipah virus should be considered in patients with encephalitis even months after their possible exposure.
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
  2. Farrar JJ
    Lancet, 1999 Oct 9;354(9186):1222-3.
    PMID: 10520625
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
  3. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
  4. Westbury HA
    Rev. - Off. Int. Epizoot., 2000 Apr;19(1):151-9.
    PMID: 11189712
    The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
  5. Chong HT, Kunjapan SR, Thayaparan T, Tong J, Petharunam V, Jusoh MR, et al.
    Can J Neurol Sci, 2002 Feb;29(1):83-7.
    PMID: 11858542
    BACKGROUND: An outbreak of viral encephalitis occurred among pig industry workers in Malaysia in September 1998 to April 1999. The encephalitis was attributed to a new paramyxovirus, Nipah virus. This is a description of the clinical features of 103 patients treated in the Seremban Hospital with characterization of the prognostic factors.

    METHODS: Clinical case records and laboratory investigations were reviewed. The case definition was: patients from the outbreak area, direct contact or in close proximity with pigs, clinical or CSF features of encephalitis.

    RESULTS: The mean age was 38 years, 89% were male, 58% were ethnic Chinese, 78% were pig farm owners or hired workers. The mean incubation period was 10 days. The patients typically presented with nonspecific systemic symptoms of fever, headache, myalgia and sore throat. Seizures and focal neurological signs were seen in 16% and 5% respectively. In the more severe cases, this was followed by drowsiness and deteriorating consciousness requiring ventilation in 61%. Autonomic disturbances and myoclonic jerks were common features. The mortality was high at 41%. Systolic hypertension, tachycardia and high fever were associated with poor outcome. On the other hand, 40% recovered fully. As for the other 19%, the residual neurological signs were mostly mild.

    CONCLUSION: Nipah virus caused an encephalitis illness with short incubation period and high mortality. The prognosis for the survivors was good.

    Matched MeSH terms: Paramyxoviridae Infections/diagnosis*
  6. Chow VT, Tambyah PA, Yeo WM, Phoon MC, Howe J
    J Clin Virol, 2000 Dec;19(3):143-7.
    PMID: 11090749
    BACKGROUND: between 1998 and 1999, an outbreak of potentially fatal viral encephalitis erupted among pig farm workers in West Malaysia, and later spread to Singapore where abattoir workers were afflicted. Although Japanese encephalitis virus was initially suspected, the predominant aetiologic agent was subsequently confirmed to be Nipah virus, a novel paramyxovirus related to but distinct from Hendra virus.

    OBJECTIVE: to describe a case of Nipah virus encephalitis in a pig farm worker from Malaysia.

    STUDY DESIGN: the clinical, laboratory and radiological findings of this patient were scrutinized. Special emphasis was placed on the electron microscopic analysis of the cerebrospinal fluid (CSF) specimen from this patient.

    RESULTS: the neurological deficits indicative of cerebellar involvement were supported by the magnetic resonance imaging that showed prominent cerebellar and brainstem lesions. CSF examination provided further evidence of viral encephalitis. Complement fixation and/or RT-PCR assays were negative for Japanese encephalitis, herpes simplex, measles and mumps viruses. ELISA for detecting IgM and IgG antibodies against Hendra viral antigens were equivocal for the CSF specimen, and tested initially negative for the first serum sample but subsequently positive for the repeat serum sample. Transmission electron microscopy of negatively-stained preparations of CSF revealed enveloped virus-like structures fringed with surface projections as well as nucleocapsids with distinctive helical and herringbone patterns, features consistent with those of other paramyxoviruses, including Hendra virus.

    CONCLUSION: this case report reiterates the relevant and feasible role of diagnostic electron microscopy for identifying and/or classifying novel or emerging viral pathogens for which sufficiently specific and sensitive tests are lacking.

    Matched MeSH terms: Paramyxoviridae Infections/diagnosis*
  7. Lim CC, Sitoh YY, Hui F, Lee KE, Ang BS, Lim E, et al.
    AJNR Am J Neuroradiol, 2000 Mar;21(3):455-61.
    PMID: 10730635
    BACKGROUND AND PURPOSE: An epidemic of suspected Japanese encephalitis occurred in Malaysia in 1998-1999 among pig farmers. In neighboring Singapore, an outbreak occurred among pig slaughterhouse workers. It was subsequently established that the causative agent in the outbreak was not the Japanese encephalitis virus but a previously unknown Hendra-like paramyxovirus named Nipah virus.

    METHODS: The brain MR images of eight patients with Nipah virus infection were reviewed. All patients tested negative for acute Japanese encephalitis virus. Seven patients had contrast-enhanced studies and six had diffusion-weighted examinations.

    RESULTS: All patients had multiple small bilateral foci of T2 prolongation within the subcortical and deep white matter. The periventricular region and corpus callosum were also involved. In addition to white matter disease, five patients had cortical lesions, three had brain stem involvement, and a single thalamic lesion was detected in one patient. All lesions were less than 1 cm in maximum diameter. In five patients, diffusion-weighted images showed increased signal. Four patients had leptomeningeal enhancement and four had enhancement of parenchymal lesions.

    CONCLUSION: The brain MR findings in patients infected with the newly discovered Nipah paramyxovirus are different from those of patients with Japanese encephalitis. In a zoonotic epidemic, this striking difference in the appearance and distribution of lesions is useful in differentiating these diseases. Diffusion-weighted imaging was advantageous in increasing lesion conspicuity.

    Matched MeSH terms: Paramyxoviridae Infections/diagnosis*
  8. Oong XY, Chook JB, Ng KT, Chow WZ, Chan KG, Hanafi NS, et al.
    Virol J, 2018 05 23;15(1):91.
    PMID: 29792212 DOI: 10.1186/s12985-018-1005-8
    BACKGROUND: Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections.
    METHODS: Severity of common cold symptoms of patients from a teaching hospital was assessed by a four-category scale and summed to obtain the total symptom severity score (TSSS). Association between the fusion and glycoprotein genes diversity, viral load (quantified using an improved RT-qPCR assay), and symptom severity were analyzed using bivariate and linear regression analyses.
    RESULTS: Among 81/3706 HMPV-positive patients, there were no significant differences in terms of demographics, number of days elapsed between symptom onset and clinic visit, respiratory symptoms manifestation and severity between different HMPV genotypes/sub-lineages. Surprisingly, elderly patients (≥65 years old) had lower severity of symptoms (indicated by TSSS) than young and middle age adults (p = 0.008). Nasopharyngeal viral load did not correlate with nor predict symptom severity of HMPV infection. Interestingly, at 3-5 days after symptom onset, genotype A-infected patients had higher viral load compared to genotype B (4.4 vs. 3.3 log10 RNA copies/μl) (p = 0.003).
    CONCLUSIONS: Overall, HMPV genetic diversity and viral load did not impact symptom severity in adults with acute respiratory tract infections. Differences in viral load dynamics over time between genotypes may have important implications on viral transmission.
    Study site: Primary Care Clinic, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis*
  9. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, et al.
    J Infect Dis, 2000 May;181(5):1760-3.
    PMID: 10823780
    During 10-19 March 1999, 11 workers in 1 of 2 Singaporean abattoirs developed Nipah-virus associated encephalitis or pneumonia, resulting in 1 fatality. A case-control study was conducted to determine occupational risk factors for infection. Case patients were abattoir A workers who had anti-Nipah IgM antibodies; control subjects were randomly selected abattoir A workers who tested negative for anti-Nipah IgM. All 13 case patients versus 26 (63%) of 41 control subjects reported contact with live pigs (P=.01). Swine importation from Malaysian states concurrently experiencing a Nipah virus outbreak was banned on 3 March 1999; on 19 March 1999, importation of Malaysian pigs was banned, and abattoirs were closed. No unusual illnesses among pigs processed during February-March were reported. Contact with live pigs appeared to be the most important risk factor for human Nipah virus infection. Direct contact with live, potentially infected pigs should be minimized to prevent transmission of this potentially fatal zoonosis to humans.
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
  10. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Paramyxoviridae Infections/diagnosis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links