MATERIALS AND METHODS: Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.
RESULTS: AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).
CONCLUSION: The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.
METHODS: The agreement indices (or pass rates) for global and local gamma evaluation, maximum allowed dose difference (MADD) and divide and conquer (D&C) techniques were calculated using a selection of acceptance criteria for 429 patient-specific pretreatment quality assurance measurements. Regression analysis was used to quantify the similarity of behavior of each technique, to determine whether possible variations in sensitivity might be present.
RESULTS: The results demonstrated that the behavior of D&C gamma analysis and MADD box analysis differs from any other dose comparison techniques, whereas MADD gamma analysis exhibits similar performance to the standard global gamma analysis. Local gamma analysis had the least variation in behavior with criteria selection. Agreement indices calculated for 2%/2 mm and 2%/3 mm, and 3%/2 mm and 3%/3 mm were correlated for most comparison techniques.
CONCLUSION: Radiation oncology treatment centers looking to compare between different dose comparison techniques, criteria or lower dose thresholds may apply the results of this study to estimate the expected change in calculated agreement indices and possible variation in sensitivity to delivery dose errors.
RESULTS: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy.
CONCLUSIONS: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.