Displaying all 7 publications

Abstract:
Sort:
  1. Sosroseno W
    Immunopharmacol Immunotoxicol, 2004 May;26(2):309-13.
    PMID: 15209366
    The aim of this study was to determine the effect of L-arginine on Porphyromonas gingivalis-induced phagocytosis by RAW264.7 cells. The cells were pretreated with L-arginine or D-arginine prior to incubation with either unopsonized or opsonized P. gingivalis. In other experiments, the cells were pretreated with L-arginine and various concentrations of NMLA (N(G)-monomethyl-L-arginine) prior to incubation with the bacteria. The phagocytosis was microscopically assessed and determined by the phagocytic index. The results showed that L-arginine, but not D-arginine enhances the ability of RAW264.7 cells to engulf the bacteria. The upregulatory effect of L-arginine on P. gingivalis-induced phagocytosis was abolished by NMLA. The results of the present study suggest that L-arginine may upregulate the P. gingivalis-induced phagocytic activity of RAW264.7 cells, perhaps, via modulation of nitric oxide synthase.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  2. Najmuldeen IA, Hadi AH, Awang K, Mohamad K, Ketuly KA, Mukhtar MR, et al.
    J Nat Prod, 2011 May 27;74(5):1313-7.
    PMID: 21428417 DOI: 10.1021/np200013g
    Three new limonoids, chisomicines A-C (1-3), have been isolated from the bark of Chisocheton ceramicus. Their structures were determined by 2D NMR, CD spectroscopic methods, and X-ray analysis. Chisomicine A (1) exhibited NO production inhibitory activity in J774.1 cells stimulated by LPS dose-dependently at high cell viability.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  3. Sosroseno W
    Asian Pac J Allergy Immunol, 2000 Dec;18(4):209-14.
    PMID: 11316041
    The aim of the present study was to determine whether Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS) may stimulate nitric oxide (NO) production by murine spleen cells. Spleen cells derived from Balb/c mice were cultured in the presence of Pg-LPS or LPS from Salmonella Typhosa. The cell were also cultured in the presence of Pg-LPS with or without L-arginine, L-arginine plus NG-monomethyl-L-arginine (NMMA), or IFN-gamma. Furthermore, the plastic non-adherent spleen cells were stimulated with Pg-LPS and L-arginine. The results showed that Pg-LPS failed to stimulate splenic NO production by themselves. Exogenous L-arginine or IFN-gamma up-regulated the NO production of Pg-LPS-stimulated spleen cells, but the stimulatory effects of L-arginine were completely blocked by NMMA. It was also demonstrated that in the presence of Pg-LPS and L-arginine, splenic macrophages were the cellular source of NO. These results suggest, therefore, that P. gingivalis-LPS may induce murine splenic macrophages to produce NO in a L-arginine and an IFN-gamma-dependent mechanism.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  4. Sosroseno W, Herminajeng E, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2004 Apr;19(2):65-70.
    PMID: 14871343
    The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW 264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or NG-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW 264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  5. Zakaria ZA, Sulaiman MR, Jais AM, Somchit MN, Jayaraman KV, Balakhrisnan G, et al.
    Fundam Clin Pharmacol, 2006 Aug;20(4):365-72.
    PMID: 16867020
    The present study was carried out to investigate on the possible involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate (L-arginine/NO/cGMP) pathway in the aqueous extract of Muntingia calabura (AEMC) leaves antinociception in mice assessed by abdominal constriction test. The AEMC, obtained by soaking the dried leaves in distilled water (DH(2)O) (1 : 2; w/v) for 24 h, was prepared in concentrations of 10%, 50% and 100% that were approximately equivalent to doses of 27, 135 and 270 mg/kg, and administered subcutaneously (s.c.) 5 min after pre-treatment (s.c.) of mice with DH(2)O, L-arginine (20 mg/kg), N(G)-monomethyl-L-arginine acetate (L-NMMA; 20 mg/kg), N(G)-nitro-L-arginine methyl esters (L-NAME; 20 mg/kg), methylene blue (MB) (20 mg/kg), respectively. The AEMC was found to exhibit a concentration-dependent antinociception after pre-challenge with DH(2)O. Interestingly, pre-treatment with L-arginine was found to block significantly (P < 0.05) the AEMC antinociception but only at the highest concentration (100%) of AEMC used. On the other hand, pre-treatment with L-NAME was found to significantly (P < 0.05) enhance the low concentration but inhibit the high concentration AEMC antinociception. MB was found to significantly (P < 0.05) enhance AEMC antinociception at all concentrations used. Except for the higher concentration of AEMC used, co-treatment with L-NAME was found to insignificantly and significantly (P < 0.05) reverse the L-arginine effect when given alone or with low concentration AEMC, respectively. In addition, co-treatment with MB significantly (P < 0.05) reversed the L-arginine effect when given alone or with 10% concentration AEMC but failed to affect the activity of the rest of concentrations used. As a conclusion, this study has demonstrated the involvement of L-arginine/NO/cGMP pathway in AEMC antinociception.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  6. Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, et al.
    J Appl Physiol (1985), 2015 May 1;118(9):1113-21.
    PMID: 25749441 DOI: 10.1152/japplphysiol.00056.2015
    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
  7. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: omega-N-Methylarginine/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links