Displaying publications 1 - 20 of 110 in total

Abstract:
Sort:
  1. Singh GG, Harden-Davies H, Allison EH, Cisneros-Montemayor AM, Swartz W, Crosman KM, et al.
    Proc Natl Acad Sci U S A, 2021 02 02;118(5).
    PMID: 33504570 DOI: 10.1073/pnas.2100205118
    Matched MeSH terms: Oceans and Seas*
  2. Ibadurrahman, Hamada K, Wada Y, Nanao J, Watanabe D, Majima T
    Sensors (Basel), 2021 Oct 28;21(21).
    PMID: 34770475 DOI: 10.3390/s21217169
    The establishment of maritime safety and security is an important concern. Ship position prediction for maritime situational awareness (MSA), as a critical aspect of maritime safety and security, requires a longer time interval than collision avoidance and maritime traffic monitoring. However, previous studies focused mainly on shorter time-interval predictions ranging from 30 min to 10 h. A longer time-interval ship position prediction is required not only for MSA, but also for efficient allocation of ships by shipping companies in accordance with global freight demand. This study used an end-to-end tracking method that inputs the previous position of a vessel to a trained deep learning model to predict its next position with an average 24-h interval. An AIS dataset with a long-time-interval distribution in a nine-year timespan for capesize bulk carriers worldwide was used. In the first experiment, a deep learning model of the Indian Ocean was examined. Subsequently, the model performance was compared for six different oceans and six primary maritime chokepoints to investigate the influence of each area. In the third experiment, a sample location within the Malacca Strait area was selected, and the number of ships was counted daily. The results indicate that the ship position can be predicted accurately with an average time interval of 24 h using deep learning systems with AIS data.
    Matched MeSH terms: Oceans and Seas
  3. Troell M, Jonell M, Henriksson PJG
    Nat Ecol Evol, 2017 09;1(9):1224-1225.
    PMID: 29046558 DOI: 10.1038/s41559-017-0304-6
    Matched MeSH terms: Oceans and Seas*
  4. Kamaruzzaman, B.Y., Noor Azhar, M.S., Norhizam, H.A.G., Willison, K.Y.S.
    MyJurnal
    Ocean sediments give information on the paleoclimatic evolution in the geological past which gives detailed information on both the age of the sediments and both paleoceanographic and paleoclimatic conditions during sedimentation. One possible way to date sediments is with 210Pb method which can be used to date sediments up to 100 years. In this study, two core samples labelled as JB15 and JB17 were collected using pledging corer, analysed and measured for the activity of 209Po and 210Po using the alpha spectrometer. Applying the methods, average sedimentation rates for JB15 and JB17 were calculated as 0.38 cmyr-1 and 0.43 cmyr-1, respectively. Assuming that the sedimentation rate values are accurate, this might imply that the sediments at the depth of 30 cm were deposited 70 years ago.
    Matched MeSH terms: Oceans and Seas
  5. Mathew M, Makhankova A, Menier D, Sautter B, Betzler C, Pierson B
    Sci Rep, 2020 04 28;10(1):7141.
    PMID: 32346046 DOI: 10.1038/s41598-020-64119-9
    During the Miocene, extensive carbonate deposition thrived over wide latitudinal ranges in Southeast Asia despite perturbations of the global climate and thermohaline circulation that affected the Asian continent. Nevertheless, the mechanisms of its emergence, adaptability in siliciclastic-dominated margins and demise, especially in southern South China Sea (SCS), are largely speculative and remains enigmatic along with a scarcity of constraints on paleoclimatic and palaeoceanographic conditions. Here we show, through newly acquired high-resolution geophysical data and accurate stratigraphic records based on strontium isotopic dating, the evolution of these platforms from ~15.5-9.5 Ma is initially tied to tectonics and eustasy, and ultimately, after ~9.5 Ma, to changes in the global climate patterns and consequent palaeoceanographic conditions. Our results demonstrate at least two paleodeltas that provided favourable substratum of elevated sand bars, which conditioning the emergence of the buildups that inadvertently mirrored the underlying strata. We show unprecedented evidences for ocean current fluctuations linked to the intensification of the Asian summer monsoon winds resulting in the formation of drifts and moats, which extirpated the platforms through sediment removal and starvation. This work highlights the imperative role of palaeoceanography in creating favourable niches for reefal development that can be applicable to carbonate platforms elsewhere.
    Matched MeSH terms: Oceans and Seas*
  6. Chan BKK, Xu G, Kim HK, Park JH, Kim W
    PLoS One, 2018;13(5):e0196309.
    PMID: 29715264 DOI: 10.1371/journal.pone.0196309
    Corals and their associated fauna are extremely diverse in tropical waters and form major reefs. In the high-latitude temperate zone, corals living near their distribution limit are considered marginal communities because they are particularly extremely sensitive to environmental and climatic changes. In this study, we examined the diversity and host usage of coral-associated barnacles on Jeju Island, Korea, the northern coral distribution limit in the East China Sea. In this study, only three coral-associated barnacles-from two genera in two subfamilies-were collected. The Pyrgomatinid barnacles Cantellius arcuatus and Cantellius cf. euspinulosum were found only on the corals Montipora millepora and Alveopora japonica, respectively. The Megatrematinid barnacle Pyrgomina oulastreae, relatively a generalist, was found on Psammocora spp. (both profundacella and albopicta) and Oulastrea crispata corals. The host usage of these three barnacles does not overlap. DNA barcode sequences of the C. arcuatus specimens collected in the present study matched those collected in Kochi in Japan, Taiwan, Malaysia and Papua New Guinea, suggesting that this species has a wide geographical distribution. C. arcuatus covers a wider host range in Taiwan waters, inhabiting Montipora spp. and Porites spp., which suggests that the host specificity of coral-associated barnacles varies with host availability. C. cf. euspinulosum probably has a very narrow distribution and host usage. The sequences of C. cf. euspinulosum on Jeju Island do not match those of any known sequences of Cantellius barnacles in the Indo-Pacific region. P. oulastreae probably prefers cold water because it has been reported in temperate regions. Coral-associated barnacles in marginal communities have considerably lower diversity than their subtropical and tropical counterparts. When host availability is limited, marginal coral-associated barnacles exhibit higher host specificity than those in subtropical and tropical reef systems.
    Matched MeSH terms: Oceans and Seas*
  7. Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, et al.
    Water Environ Res, 2024 Jul;96(7):e11070.
    PMID: 39005104 DOI: 10.1002/wer.11070
    Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
    Matched MeSH terms: Oceans and Seas*
  8. McNutt M
    Science, 2014 May 30;344(6187):947.
    PMID: 24876464 DOI: 10.1126/science.1255963
    Matched MeSH terms: Oceans and Seas
  9. Fattah S, Gani A, Ahmedy I, Idris MYI, Targio Hashem IA
    Sensors (Basel), 2020 Sep 21;20(18).
    PMID: 32967124 DOI: 10.3390/s20185393
    The domain of underwater wireless sensor networks (UWSNs) had received a lot of attention recently due to its significant advanced capabilities in the ocean surveillance, marine monitoring and application deployment for detecting underwater targets. However, the literature have not compiled the state-of-the-art along its direction to discover the recent advancements which were fuelled by the underwater sensor technologies. Hence, this paper offers the newest analysis on the available evidences by reviewing studies in the past five years on various aspects that support network activities and applications in UWSN environments. This work was motivated by the need for robust and flexible solutions that can satisfy the requirements for the rapid development of the underwater wireless sensor networks. This paper identifies the key requirements for achieving essential services as well as common platforms for UWSN. It also contributes a taxonomy of the critical elements in UWSNs by devising a classification on architectural elements, communications, routing protocol and standards, security, and applications of UWSNs. Finally, the major challenges that remain open are presented as a guide for future research directions.
    Matched MeSH terms: Oceans and Seas
  10. Corrado R, Lacorata G, Palatella L, Santoleri R, Zambianchi E
    Sci Rep, 2017 04 11;7:46291.
    PMID: 28397797 DOI: 10.1038/srep46291
    The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
    Matched MeSH terms: Oceans and Seas
  11. Song J, Farhadi A, Tan K, Lim L, Tan K
    Sci Total Environ, 2024 May 20;926:172056.
    PMID: 38552980 DOI: 10.1016/j.scitotenv.2024.172056
    Dissolved oxygen (DO) is an important parameter that affects the biology, physiology, and immunology of aquatic animals. In recent decades, DO levels in the global oceans have sharply decreased, partly due to an increase in atmospheric carbon dioxide, temperature, and anthropogenic nutrient loads. Although there have been many reports on the effects of hypoxia on the survival, growth, behavior, and immunity of bivalves, this information has not been well organized. Therefore, this article provides a comprehensive review of the effects of hypoxia on bivalves. In general, hypoxia negatively impacts the food consumption rate and assimilation efficiency, as well as increasing respiration rates in many bivalves. As a result, it reduces the energy allocation for bivalve growth, shell formation, and reproduction. In severe cases, prolonged exposure to hypoxia can result in mass mortality in bivalves. Moreover, hypoxia also has adverse effects on the immunity and response of bivalves to predators, including decreased burial depths, sensitivity to predators, impairment of byssus production, and negatively impacts on the integrity, strength, and composition of bivalve shells. The tolerance of bivalves to hypoxia largely depends on size and species, with larger bivalves being more susceptible to hypoxia and intertidal species being relatively more tolerant to hypoxia. The information in this article is very useful for elucidating the current research status of hypoxia on bivalves and determining future research directions.
    Matched MeSH terms: Oceans and Seas
  12. Taylor A, Mortimer K, Jimi N
    Zootaxa, 2022 Oct 21;5196(4):451-491.
    PMID: 37045067 DOI: 10.11646/zootaxa.5196.4.1
    Whilst seven species of magelonids have been originally described from the North-Western Pacific Ocean, only two have been from Japanese waters. Given the often high diversity of magelonid species within relatively small regions, the number of Japanese Magelona species is likely to be higher. The validity of several recorded species from the region has been additionally called into question, and the urgent need for a review of magelonids of Japan highlighted. Newly collected samples of magelonids have emphasised the presence of three species new to science occurring off Japan, herein described: Magelona alba sp. nov., Magelona armatis sp. nov., and Magelona boninensis sp. nov. A redescription of Magelona japonica is additionally provided, along with notes on a fifth species, which approaches Magelona cornuta. A dichotomous identification key to magelonid species of the North-Western Pacific Ocean, along with a table of characters for all five observed species is provided.
    Matched MeSH terms: Oceans and Seas
  13. Ponnampalam LS
    Malays J Med Sci, 2014 Mar;21(2):1-3.
    PMID: 24876801
    Marine mammals, as top predators in the marine food web, are sentinels of changes in the oceans and public health. Pollution in the sea and overfishing of seafood resources affects these organisms just as much as it affects human beings. Medics, especially doctors, have an influential reach to patients, and are in an ideal position to get better acquainted with ongoing marine environmental issues and subsequently disseminating such information to them. While seemingly an out-of-the-box approach, it is one that can help with environmental conservation and preservation for the future of humanity.
    Matched MeSH terms: Oceans and Seas
  14. Mustafa S
    Ambio, 2010 Nov;39(7):528-30.
    PMID: 21090008
    Marine and terrestrial ecosystems are so fundamentally different in some aspects that many of the issues concerning biodiversity cannot be interpreted using a single theory of common application to all ecosystems. Their limitation is evident when it comes to highly biodiverse and interconnected marine ecosystems such as coral reefs. Trophic links are a major factor, but space, breeding, shelter from predators, environmental cues, behavior ingrained in genotypes, genetic variability, mutations, and connectivity of marine critical habitats are also important. The importance of the connectivity of habitats such as coral reefs, seagrasses, and mangrove in biodiversity preservation should be recognized. Migratory species require corridors for gene flow and that influences diversity. The existing theories do not address the biodiversity issues related to life in the abyssal plains and deep sea trenches and the challenge posed by climate change. An accurate understanding of marine biodiversity requires comprehensive knowledge of ecological interrelationships and new perspectives that reflect the reality of global environmental change.
    Matched MeSH terms: Oceans and Seas
  15. Arai T
    PLoS One, 2014;9(6):e100779.
    PMID: 24964195 DOI: 10.1371/journal.pone.0100779
    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
    Matched MeSH terms: Oceans and Seas*
  16. Musa SM, Ripley DM, Moritz T, Shiels HA
    J Fish Biol, 2020 Jul;97(1):257-264.
    PMID: 32383486 DOI: 10.1111/jfb.14370
    Elasmobranchs are key to a healthy marine ecosystem but are under threat from human activities, such as destructive fisheries and shark finning. Embryos of oviparous elasmobranchs may be further challenged during development by rising temperatures and falling dissolved oxygen concentrations in their intertidal environment. However, the impact of climate change on survival and growth of oviparous elasmobranchs is still poorly understood. Here, we investigate the effects of temperature and hypoxia on the growth and survival of small-spotted catshark (Scyliorhinus canicula) embryos by incubating eggs in normoxia 15°C, normoxia 20°C, hypoxia 15°C, or hypoxia 20°C. Incubation under the elevated temperature increased the embryonic growth rate, yolk consumption rate and Fulton's condition factor at hatching, whilst decreasing the total length and body mass of newly hatched sharks. Under low oxygen conditions (50% air saturation) the survival rate of S. canicula embryos dropped significantly and the temperature-induced increase in Fulton's condition factor was reversed. Together, these data demonstrate both the individual and compound effects of elevated temperature and hypoxia on the survival and growth during early ontogeny of a ubiquitous, coastal elasmobranch, S. canicula.
    Matched MeSH terms: Oceans and Seas*
  17. Fleming LE, Landrigan PJ, Ashford OS, Whitman EM, Swift A, Gerwick WH, et al.
    Ann Glob Health, 2024;90(1):41.
    PMID: 39005643 DOI: 10.5334/aogh.4471
    A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean's health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean's natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector tolead this effort.
    Matched MeSH terms: Oceans and Seas*
  18. Che Hasan R, Ierodiaconou D, Laurenson L, Schimel A
    PLoS One, 2014;9(5):e97339.
    PMID: 24824155 DOI: 10.1371/journal.pone.0097339
    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.
    Matched MeSH terms: Oceans and Seas
  19. Fadeeva Z, Van Berkel R
    J Environ Manage, 2021 Jan 01;277:111457.
    PMID: 33045648 DOI: 10.1016/j.jenvman.2020.111457
    Marine plastic pollution (MPP) is an urgent environmental and socio-economic problem. MPP amounts to 300 million tons annually, originates largely from land-based sources and severely impacts marine ecosystem, harms livelihoods and causes costs for businesses and governments. Plastics permeate the whole width and depth of seas and oceans, near well-developed coastal zones and equally in remotest corners. This undermines economic and social value of the oceans, particularly in terms of fisheries productivity and tourism. The G20 members, responsible for about two-thirds of global plastic waste, recognize the problem and undertake preventive measures - individually and collectively. Yet, are there efficient, effective and sufficient given the urgency of MPP and the contribution of G20 countries. This article highlights existing policies and identifies further policy options using a custom framework for MPP policy that merges Circular Economy (CE) and life-cycle perspectives.
    Matched MeSH terms: Oceans and Seas
  20. Chow CH, Cheah W, Tai JH, Liu SF
    Sci Rep, 2019 10 29;9(1):15550.
    PMID: 31664110 DOI: 10.1038/s41598-019-51989-x
    In summer 2010, a massive bloom appeared in the middle (16-25°N, 160-200°E) of the North Pacific Subtropical Gyre (NPSG) creating a spectacular oasis in the middle of the largest oceanic desert on Earth. Peaked in June 2010 covering over two million km2 in space, this phytoplankton bloom is the largest ever recorded by ocean color satellites in the NPSG over the period from 1997 to 2013. The initiation and mechanisms sustaining the massive bloom were due to atmospheric and oceanic anomalies. Over the north (25-30°N) of the bloom, strong anticyclonic winds warmed sea surface temperature (SST) via Ekman convergence. Subsequently, anomalous westward ocean currents were generated by SST meridional gradients between 19°N and 25°N, producing strong velocity shear that caused large number of mesoscale (100-km in order) cyclonic eddies in the bloom region. The ratio of cyclonic to anticyclonic eddies of 2.7 in summer 2010 is the highest over the 16-year study period. As a result of the large eddy-number differences, eddy-eddy interactions were strong and induced submesoscale (smaller than 100 km) vertical pumping as observed in the in-situ ocean profiles. The signature of vertical pumping was also presented in the in-situ measurements of chlorophyll and nutrients, which show higher concentrations in 2010 than other years.
    Matched MeSH terms: Oceans and Seas
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links