METHODS: Patients were randomly assigned (1:1:1) to pembrolizumab, pembrolizumab-chemotherapy, or cetuximab-chemotherapy. Efficacy was evaluated in programmed death ligand 1 (PD-L1) combined positive score (CPS) ≥ 20, CPS ≥ 1, and total populations, with no multiplicity or alpha adjustment.
RESULTS: The median study follow-up was 45.0 months (interquartile range, 41.0-49.2; n = 882). At data cutoff (February 18, 2020), overall survival improved with pembrolizumab in the PD-L1 CPS ≥ 20 (hazard ratio [HR], 0.61; 95% CI, 0.46 to 0.81) and CPS ≥ 1 populations (HR, 0.74; 95% CI, 0.61 to 0.89) and was noninferior in the total population (HR, 0.81; 95% CI, 0.68 to 0.97). Overall survival improved with pembrolizumab-chemotherapy in the PD-L1 CPS ≥ 20 (HR, 0.62; 95% CI, 0.46 to 0.84), CPS ≥ 1 (HR, 0.64; 95% CI, 0.53 to 0.78), and total (HR, 0.71; 95% CI, 0.59 to 0.85) populations. The objective response rate on second-course pembrolizumab was 27.3% (3 of 11). PFS2 improved with pembrolizumab in the PD-L1 CPS ≥ 20 (HR, 0.64; 95% CI, 0.48 to 0.84) and CPS ≥ 1 (HR, 0.79; 95% CI, 0.66 to 0.95) populations and with pembrolizumab-chemotherapy in the PD-L1 CPS ≥ 20 (HR, 0.64; 95% CI, 0.48 to 0.86), CPS ≥ 1 (HR, 0.66; 95% CI, 0.55 to 0.81), and total (HR, 0.73; 95% CI, 0.61 to 0.88) populations. PFS2 was similar after pembrolizumab and longer after pembrolizumab-chemotherapy on next-line taxanes and shorter after pembrolizumab and similar after pembrolizumab-chemotherapy on next-line nontaxanes.
CONCLUSION: With a 4-year follow-up, first-line pembrolizumab and pembrolizumab-chemotherapy continued to demonstrate survival benefit versus cetuximab-chemotherapy in recurrent/metastatic head and neck squamous cell carcinoma. Patients responded well to subsequent treatment after pembrolizumab-based therapy.
PATIENTS AND METHODS: Three hundred sixty-nine children with favorable-risk BCP-ALL (age 1-9 years, no extramedullary disease, and no high-risk genetics) who cleared minimal residual disease (≤0.01%) at the end of remission induction were enrolled into Ma-Spore (MS) ALL trials. One hundred sixty-seven standard-risk (SR) patients (34% of Malaysia-Singapore ALL 2003 study [MS2003]) were treated with the MS2003-SR protocol and received 120 mg/m2 of anthracyclines during delayed intensification while 202 patients (42% of MS2010) received an anthracycline-free successor protocol. The primary outcome was a noninferiority margin of 1.15 in 6-year event-free survival (EFS) between the MS2003-SR and MS2010-SR cohorts.
RESULTS: The 6-year EFS of MS2003-SR and MS2010-SR (anthracycline-free) cohorts was 95.2% ± 1.7% and 96.5% ± 1.5%, respectively (P = .46). The corresponding 6-year overall survival was 97.6% and 99.0% ± 0.7% (P = .81), respectively. The cumulative incidence of relapse was 3.6% and 2.6%, respectively (P = .42). After adjustment for race, sex, age, presenting WBC, day 8 prednisolone response, and favorable genetic subgroups, the hazard ratio for MS2010-SR EFS was 0.98 (95% CI, 0.84 to 1.14; P = .79), confirming noninferiority. Compared with MS2003-SR, MS2010-SR had significantly lower episodes of bacteremia (30% v 45.6%; P = .04) and intensive care unit admissions (1.5% v 9.5%; P = .004).
CONCLUSION: In comparison with MS2003-SR, the anthracycline-free MS2010-SR protocol is not inferior and was less toxic as treatment for favorable-risk childhood BCP-ALL.
METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS).
RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)].
CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2.
TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.
PATIENTS AND METHODS: Considering the limited placebo effect and significant clinical benefit of olaparib in previous trials, and the rapid approval of olaparib in China, this phase III study was designed as an open-label, single-arm trial. Patients with high-grade epithelial PSR ovarian cancer were enrolled from country-wide clinical centers across China and Malaysia. Patients received oral olaparib (300 mg) twice daily until disease progression or unacceptable toxicity. Primary endpoint was median PFS (mPFS). Primary analysis of PFS using the Kaplan-Meier method was performed when data reached 60% maturity (clinicaltrials.gov NCT03534453).
RESULTS: Between 2018 and 2020, 225 patients were enrolled, and 224 received olaparib; 35.7% had received ≥3 lines of chemotherapy, 35.3% had achieved complete response to their last line of platinum-based chemotherapy, and 41.1% had a platinum-free interval ≤12 months. At primary data cut-off (December 25, 2020), overall mPFS was 16.1 months; mPFS was 21.2 and 11.0 months in BRCA-mutated and wild-type BRCA subgroups, respectively. Adverse events (AE) occurred in 99.1% of patients (grade ≥3, 48.7%); 9.4% discontinued therapy due to treatment-related AEs.
CONCLUSIONS: Olaparib maintenance therapy was highly effective and well tolerated in Asian patients with PSR ovarian cancer, regardless of BRCA status. This study highlights the promising efficacy of olaparib in this Asian population. See related commentary by Nicum and Blagden, p. 2201.
AIMS OF THE STUDY: To analyse pre-treatment clinical features of DLBCL patients that are predictive of R-CHOP therapy resistance and early disease relapse after R-CHOP therapy treatment.
METHODS USED TO CONDUCT THE STUDY: A total of 698 lymphoma patients were screened and 134 R-CHOP-treated DLBCL patients were included. The Lugano 2014 criteria was applied for assessment of treatment response. DLBCL patients were divided into R-CHOP resistance/early relapse group and R-CHOP sensitive/late relapse group.
RESULTS OF THE STUDY: 81 of 134 (60%) were R-CHOP sensitive/late relapse, while 53 (40%) were R-CHOP resistance/early relapse. The median follow-up period was 59 months ± standard error 3.6. Five-year overall survival rate of R-CHOP resistance/early relapse group was 2.1%, while it was 89% for RCHOP sensitive/late relapse group. Having more than one extranodal site of DLBCL disease is an independent risk factor for R-CHOP resistance/early relapse [odds ratio = 5.268 (1.888-14.702), P = .002]. The commonest extranodal sites were head and neck, gastrointestinal tract, respiratory system, vertebra and bones. Advanced age (>60 years), advanced disease stage (lll-lV), raised pre-treatment lactate dehydrogenase level, bone marrow involvement of DLBCL disease high Eastern Cooperative Oncology Group status (2-4) and high R-IPI score (3-5) showed no significant association with R-CHOP therapy resistance/early disease relapse (multivariate analysis: P > .05).
CONCLUSION AND CLINICAL IMPLICATIONS: DLBCL patients with more than one extranodal site are 5.268 times more likely to be R-CHOP therapy resistance or experience early disease relapse after R-CHOP therapy. Therefore, correlative studies are warranted in DLBCL patients with more than one extranodal site of disease to explore possible underlying mechanisms of chemoresistance.
MATERIALS AND METHODS: This retrospective study looked at patients who had palliative chemotherapy with either cisplatin/5FU or carboplatin/5FU for metastatic and recurrent SCCHN and NPC. It included patients who were treated at UKMMC from 1st January 2004 to 31st December 2009 with either palliative IV cispaltin 75 mg/m2 D1 only plus IV 5FU 750 mg/m2 D1-5 infusion or IV Carboplatin AUC 5 D1 only plus IV 5FU 500 mg/m2 D1-2 infusion plus IV 5FU 500 mg/m2 D1-2 bolus. The specific objectives were to determine the efficacy of palliative chemotherapy in terms of overall response rate (ORR), median progression free survival (PFS) and median overall survival (OS) and to evaluate the toxicities of both regimens.
RESULTS: A total of 41 patients were eligible for this study. There were 17 in the cisplatin/5FU arm and 24 in the carboplatin/5FU arm. The ORR was 17.7 % for cisplatin/5FU arm and 37.5 % for carboplatin/5FU arm (p-value=0.304). The median PFS was 7 months for cisplatin/5FU and 9 months for carboplatin/5FU (p-value=1.015). The median OS was 10 months for cisplatin/5FU arm and 12 months for carboplatin/5FU arm (p-value=0.110). There were 6 treatment-related deaths (6/41=14.6%), four in the carboplatin/5FU arm (4/24=16.7%) and 2 in the cisplatin/5FU arm (2/17=11.8%). Grade 3 and 4 hematologic toxicity was also more common with carboplatin/5FU group, this difference being predominantly due to grade 3-4 granulocytopenia (41.6% vs. 0), grade 3-4 anemia (37.5% vs. 0) and grade 3-4 thrombocytopenia (16.6% vs. 0).
CONCLUSIONS: Carboplatin/5FU is not inferior to cisplatin/5FU with regard to its efficacy. However, there was a high rate of treatment-related deaths with both regimens. A better alternative needs to be considered.
METHODS AND MATERIALS: Patients with T3-4, N2 M0 breast cancer diagnosed between January 2005 and December 2008 and who received at least one cycle of neoadjuvant chemotherapy were eligible for this study. Thirty-four patients were identified from the Chemotherapy Daycare Records and their medical records were reviewed retrospectively. The neoadjuvant chemotherapy regimen administered was at the discretion of the treating oncologist. Breast tumour size and nodal status was assessed at diagnosis, at each cycle and before surgery.
RESULTS: All 34 patients had invasive ductal cancer. The median age was 52 years (range 27-69). 65% had T4 disease and 76% were clinically lymph node positive at diagnosis. The median size of the breast tumour at presentation was 80 mm (range 42-200 mm). Estrogen and progesterone receptor positivity was seen in less than 40% and HER2 positivity, by immunohistochemistry, in 27%. The majority (85%) of patients had anthracycline based chemotherapy, without taxanes. The overall response rate (clinical CR+PR) was 67.6% and pathological complete responses were apparent in two (5.9%). 17.6% of patients defaulted part of their planned treatment. Recurrent disease was seen in 44.1% and the median time to relapse was 11.3 months. The three year disease free and overall survival rates were 52.5% and 58% respectively.
CONCLUSION: Neoadjuvant chemotherapy for locally advanced breast cancer in a Malaysian setting confers response and pCR rates comparable to published clinical trials. Patients undergoing neoadjuvant chemotherapy are at risk of defaulting part of their treatment and therefore their concerns need to be identified proactively and addressed in order to improve outcomes.
METHODS: In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 209 sites in 29 countries, we randomly assigned patients 2:1 with untreated locally recurrent inoperable or metastatic triple-negative breast cancer using a block method (block size of six) and an interactive voice-response system with integrated web-response to pembrolizumab (200 mg) every 3 weeks plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine plus carboplatin) or placebo plus chemotherapy. Randomisation was stratified by type of on-study chemotherapy (taxane or gemcitabine-carboplatin), PD-L1 expression at baseline (combined positive score [CPS] ≥1 or <1), and previous treatment with the same class of chemotherapy in the neoadjuvant or adjuvant setting (yes or no). Eligibility criteria included age at least 18 years, centrally confirmed triple-negative breast cancer; at least one measurable lesion; provision of a newly obtained tumour sample for determination of triple-negative breast cancer status and PD-L1 status by immunohistochemistry at a central laboratory; an Eastern Cooperative Oncology Group performance status score 0 or 1; and adequate organ function. The sponsor, investigators, other study site staff (except for the unmasked pharmacist), and patients were masked to pembrolizumab versus saline placebo administration. In addition, the sponsor, the investigators, other study site staff, and patients were masked to patient-level tumour PD-L1 biomarker results. Dual primary efficacy endpoints were progression-free survival and overall survival assessed in the PD-L1 CPS of 10 or more, CPS of 1 or more, and intention-to-treat populations. The definitive assessment of progression-free survival was done at this interim analysis; follow-up to assess overall survival is continuing. For progression-free survival, a hierarchical testing strategy was used, such that testing was done first in patients with CPS of 10 or more (prespecified statistical criterion was α=0·00411 at this interim analysis), then in patients with CPS of 1 or more (α=0·00111 at this interim analysis, with partial alpha from progression-free survival in patients with CPS of 10 or more passed over), and finally in the intention-to-treat population (α=0·00111 at this interim analysis). This study is registered with ClinicalTrials.gov, NCT02819518, and is ongoing.
FINDINGS: Between Jan 9, 2017, and June 12, 2018, of 1372 patients screened, 847 were randomly assigned to treatment, with 566 patients in the pembrolizumab-chemotherapy group and 281 patients in the placebo-chemotherapy group. At the second interim analysis (data cutoff, Dec 11, 2019), median follow-up was 25·9 months (IQR 22·8-29·9) in the pembrolizumab-chemotherapy group and 26·3 months (22·7-29·7) in the placebo-chemotherapy group. Among patients with CPS of 10 or more, median progression-free survival was 9·7 months with pembrolizumab-chemotherapy and 5·6 months with placebo-chemotherapy (hazard ratio [HR] for progression or death, 0·65, 95% CI 0·49-0·86; one-sided p=0·0012 [primary objective met]). Median progression-free survival was 7·6 and 5·6 months (HR, 0·74, 0·61-0·90; one-sided p=0·0014 [not significant]) among patients with CPS of 1 or more and 7·5 and 5·6 months (HR, 0·82, 0·69-0·97 [not tested]) among the intention-to-treat population. The pembrolizumab treatment effect increased with PD-L1 enrichment. Grade 3-5 treatment-related adverse event rates were 68% in the pembrolizumab-chemotherapy group and 67% in the placebo-chemotherapy group, including death in <1% in the pembrolizumab-chemotherapy group and 0% in the placebo-chemotherapy group.
INTERPRETATION: Pembrolizumab-chemotherapy showed a significant and clinically meaningful improvement in progression-free survival versus placebo-chemotherapy among patients with metastatic triple-negative breast cancer with CPS of 10 or more. These findings suggest a role for the addition of pembrolizumab to standard chemotherapy for the first-line treatment of metastatic triple-negative breast cancer.
FUNDING: Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.
CASE REPORT: A 59-year-old man was diagnosed with acute promyelocytic leukaemia. Following this, he underwent all-trans retinoic acid (ATRA) based chemotherapy and achieved remission. Four years later, the disease relapsed and he was given idarubicin, mitoxantrone and ATRA followed by maintenance chemotherapy (ATRA, mercaptopurine and methotrexate). He achieved a second remission for the next 11 years. During a follow-up later, his full blood picture showed leucocytosis, anaemia and leucoerythroblastic picture. Bone marrow examination showed hypercellular marrow with trilineage dysplasia, 3% blasts but no abnormal promyelocyte. Fluorescence in-situ hybridisation (FISH) study of the PML/RARA gene was negative. Karyotyping result revealed complex abnormalities and monosomal karyotype (MK). A diagnosis of therapy-related myelodysplastic syndrome/myeloproliferative neoplasm with unfavourable karyotypes and MK was made. The disease progressed rapidly and transformed into therapy-related acute myeloid leukaemia in less than four months, complicated with severe pneumonia. Despite aggressive treatment with antibiotics and chemotherapy, the patient succumbed to the illness two weeks after the diagnosis.
DISCUSSION AND CONCLUSION: Diagnosis of t-MN should be suspected in patients with a history of receiving cytotoxic agents. Karyotyping analysis is crucial for risk stratification as MK in addition to complex aberrant karyotypes predicts unfavourable outcome. Further studies are required to address the optimal management for patients with t-MN.