Carvacrol, called CA, is a dynamic phytoconstituent characterized by a phenol ring abundantly sourced from various natural reservoirs. This versatile scaffold serves as a pivotal template for the design and synthesis of novel drug molecules, harboring promising biological activities. The active sites positioned at C-4, C-6, and the hydroxyl group (-OH) of CA offer fertile ground for creating potent drug candidates from a pharmacological standpoint. In this comprehensive review, we delve into diverse synthesis pathways and explore the biological activity of CA derivatives. We aim to illuminate the potential of these derivatives in discovering and developing efficacious treatments against a myriad of life-threatening diseases. By scrutinizing the structural modifications and pharmacophore placements that enhance the activity of CA derivatives, we aspire to inspire the innovation of novel therapeutics with heightened potency and effectiveness.
Terpenes and terpenoids are among the key impact substances in the food and fragrance industries. Equipped with pharmacological properties and applications as ideal precursors for the biotechnological production of natural aroma chemicals, interests in these compounds have been escalating. Hence, the syntheses of new derivatives that can show improved properties are often called for. Stereoselective biotransformation offers several benefits to increase the rate of production, in terms of both the percentage yield and its enantiomeric excesses. Baker's yeast (Saccharomyces cerevisiae) is broadly used as a whole cell stereospecific reduction biocatalyst, due to its capability in reducing carbonyls and carbon-carbon double bonds, which also extends its functionality as a versatile biocatalyst in terpenoid biotransformation. This review provides some insights on the development and prospects in the reductive biotransformation of monoterpenoids and sesquiterpenoids using S. cerevisiae, with an overview of strategies to overcome the common challenges in large-scale implementation.
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
Rose Oxide is a monoterpene along with cyclic ether used in fragrance to produce rosy notes, in general, there are 4 stereoisomeric structures of the Rose Oxide, which the cis-configured Rose Oxide has a very unique and strong note in perfumery. In this review, several approaches were reported on account of the Rose Oxide applied in perfumery from 1864 to 2019 via quantitative and qualitative approaches.
Extraction of lemongrass oleoresin was successfully optimised using Pressurised Liquid Extraction (PLE). Character impact compounds; neral, geranial and geraniol which constituted 72% oleoresin, were monitored during this optimisation study by using GCMSD. Based on maximum extraction of these compounds, the optimised operating conditions for PLE were a temperature of 167°C, a pressure of 1203 psi and a static time of 20.43 min. The quality of PLE extract were compared with conventional extraction methods, hydrodistillation and Soxhlet extraction. The proposed method was found to be better in term of quantity of the targeted character impact compounds.
Lemongrass leaves are often under-utilised and unexploited. In this study, lemongrass leaves were used to produce water soluble essential oil using a steam distillation system. Water steam was passed through the lemongrass leaves which were placed and supported on a grid above the water in a distiller. The steam distillation system was fabricated and optimised using Response Surface Methodology (RSM). The maximum oil yield with optimal relative citral content is obtained at 6.69 of plant-to-water ratio, 26.68 minutes of distillation time using air-dried lemongrass leaves left under the shade for two days. At the optimum conditions, the predicted oil yield was 0.6719% of lemongrass (C. citratus) oil which contains 71.79% of citral content.
Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.
Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
Rhodinol is a mixture of geraniol and citronellol. It is the second fraction in fractional distillation of commercially grown Cymbopogon nardus. The physical and chemical similarities of these two compounds made them inseparable. The individual use of each compound is of great importance. A selective oxidation (hydrogen peroxide activated by platinum black) of geraniol (in rhodinol) to geranial was done while remaining citronellol intact in order to separate the two compounds into different chemical functionality. A yield of 81% geranial achieved while minimizing citronellal formation from citronellol to 17%. Chemical separation using sodium hydrogen sulfite (NaHSO3) was done to separate the aldehydes from the unreacted citronellol. Purification using fractional distillation was done to obtain pure geraniol and remove minor fraction of citronellal.
The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of -8.30 kcal mol-1, comparable to OTV with ∆Gbind of -8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.
In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.
Presently, functional foods and nutraceuticals are gaining immense importance in the prevention of various maladies through dietary regimen module. Consumption of fruits and vegetables based diet has pursuit a range of bioactive components, especially phytochemicals targeting life threatening ailments. In this context, lycopene is an extensively studied antioxidant potentially present in watermelon, tomato, pink guava etc. Watermelon is one of the unique sources having readily available cis-isomeric lycopene. The distinctive aroma of watermelon is imparted by medium- and short-chain fatty acids along with geranial, ß-ionone and neral. Its consumption has been escalated owing to rich nutritional profile and allied health benefits. It is effective in reducing the extent of cancer insurgence, cardiovascular disorders, diabetes and macular diseases. The structural characteristics, physiochemical properties and therapeutic effects of lycopene are the limelight of the manuscript. However, further research investigations are still needed to address the health enhancing potential of watermelon lycopene.
We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5
D
0
→
7
F1) and -0.0059 at 613 nm (5
D
0
→
7
F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5
D
4
→
7
F6), +0.0078 at 540 nm (5
D
4
→
7
F5), and -0.0018 at 552 nm (5
D
4
→
7
F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
Methoxylation is a relevant technological process applied in the production of high-value α-pinene derivatives. This report investigates the use of potassium alum [KAl(SO4)2 · 12H2O] as a catalyst in the methoxylation of α-pinene. In this study, the methoxylation reaction was optimized for the highest conversion of α-pinene and selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume ratio of α-pinene: methanol (1:4, 1:7, 1:10), reaction temperature (50, 55, 60 and 65 °C), and reaction time (72, 144, 216, 288, 360 min). The highest selectivity of KAl(SO4)2∙12H2O in the methoxylation of α-pinene was achieved under an optimal condition of 1 g of catalyst loading, volume ratio of 1:10, as well as the reaction temperature and incubation time of 65 °C and 6 h, respectively. GC-MS results revealed the yields of the methoxylated products from the 98.2% conversion of α-pinene, to be 59.6%, 8.9%, and 7.1% for α-terpinyl methyl ether (TME), fenchyl methyl ether (FME), bornyl methyl ether (BME), respectively. It was apparent that a lower KAl(SO4)2∙12H2O loading (0.5-1.5 g) was more economical for the methoxylation reaction. The findings seen here indicated the suitability of the KAl(SO4)2 · 12H2O to catalyze the methoxylation of α-pinene to produce an commercially important ethers.
A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
Effect of 2.0 % ginger oil (GO) and 1.5 % ginger extract (GE) in combination with 10.0 % gum arabic (GA) was evaluated for the postharvest control of anthracnose and maintaining quality of Eksotika II papaya fruit during storage at 12 ± 1 °C and 80-85 % RH. Antifungal compounds present in GO and GE were analyzed using gas chromatography and GO was found to contain α-pinene, 1, 8-cineole and borneol, while only borneol was present in GE due to different extraction methods applied. The highest antifungal activity was shown in 2.0 % GO combined with 10 % GA, which significantly (P
Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
The present work aims to address the gas-phase biotransformation of geraniol into citronellol using growing cells of Saccharomyces cerevisiae (baker's yeast) in a continuous-closed-gas-loop bioreactor (CCGLB). This study revealed that the gaseous geraniol had a severe effect on the production of biomass during the growing cell biotransformation resulting in the decrease in the specific growth rate from 0.07 to 0.05 h⁻¹. The rate of reaction of the growing cell biotransformation was strongly affected by agitation and substrate flow rates. The highest citronellol concentration of 1.18 g/L and initial rate of reaction of 7.06 × 10⁻⁴ g/min g(cell) were obtained at 500 rpm and 8 L/min, respectively.