Displaying all 11 publications

Abstract:
Sort:
  1. Ng YL, Lau YL, Hamid MHA, Jelip J, Ooi CH, Mudin RN, et al.
    Parasitol Res, 2023 Jan;122(1):195-200.
    PMID: 36378331 DOI: 10.1007/s00436-022-07716-z
    Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.
    Matched MeSH terms: Merozoites/metabolism
  2. Mohd Bukhari FD, Lau YL, Fong MY
    Am J Trop Med Hyg, 2020 Dec 14.
    PMID: 33319732 DOI: 10.4269/ajtmh.20-0797
    Invasion of Plasmodium knowlesi merozoite into human erythrocytes involves molecular interaction between the parasite's Duffy binding protein (PkDBPαII) and the Duffy antigen receptor for chemokines on the erythrocytes. This study investigates the binding activity of human erythrocyte with PkDBPαII of P. knowlesi isolates from high and low parasitemic patients in an erythrocyte binding assay. The binding activity was determined by counting the number and measuring the size of rosettes formed in the assay. The protein PkDBPαII of P. knowlesi isolated from low parasitemia cases produced significantly higher number of rosettes with human erythrocytes than high parasitemia case isolates (65.5 ± 12.9 and 17.2 ± 5.5, respectively). Interestingly, PkDBPαII of isolates from high parasitemia cases formed significantly larger rosettes with human erythrocytes than PkDBPαII of isolates from low parasitemia cases (18,000 ± 13,000 µm2 and 1,315 ± 623 µm2, respectively).
    Matched MeSH terms: Merozoites
  3. Ng YH, Fong MY, Subramaniam V, Shahari S, Lau YL
    Res Vet Sci, 2015 Dec;103:201-4.
    PMID: 26679818 DOI: 10.1016/j.rvsc.2015.10.009
    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.
    Matched MeSH terms: Merozoites
  4. Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, et al.
    PLoS Negl Trop Dis, 2022 Jun;16(6):e0010492.
    PMID: 35737709 DOI: 10.1371/journal.pntd.0010492
    Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
    Matched MeSH terms: Merozoites
  5. Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al.
    Blood, 2017 09 14;130(11):1357-1363.
    PMID: 28698207 DOI: 10.1182/blood-2017-02-764787
    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.
    Matched MeSH terms: Merozoites/physiology
  6. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Merozoites/immunology*
  7. Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, et al.
    J Infect Dis, 2019 11 06;220(12):1950-1961.
    PMID: 31419296 DOI: 10.1093/infdis/jiz407
    BACKGROUND: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate.

    METHODS: Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay.

    RESULTS: The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28.

    CONCLUSION: Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.

    Matched MeSH terms: Merozoites/immunology
  8. Cheong FW, Fong MY, Lau YL
    Acta Trop, 2016 Feb;154:89-94.
    PMID: 26624919 DOI: 10.1016/j.actatropica.2015.11.005
    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes.
    Matched MeSH terms: Merozoites
  9. Ahmed MA, Chu KB, Quan FS
    PeerJ, 2018;6:e6141.
    PMID: 30581686 DOI: 10.7717/peerj.6141
    Introduction: The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia.

    Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.

    Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.

    Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.

    Matched MeSH terms: Merozoites
  10. Putaporntip C, Kuamsab N, Jongwutiwes S
    Infect Genet Evol, 2016 Oct;44:367-375.
    PMID: 27480919 DOI: 10.1016/j.meegid.2016.07.040
    Plasmodium knowlesi and P. cynomolgi are simian malaria parasites capable of causing symptomatic human infections. The interaction between the Duffy binding protein alpha on P. knowlesi merozoite and the Duffy-antigen receptor for chemokine (DARC) on human and macaque erythrocyte membrane is prerequisite for establishment of blood stage infection whereas DARC is not required for erythrocyte invasion by P. cynomolgi. To gain insights into the evolution of the PkDBP gene family comprising PkDBPα, PkDBPβ and PkDBPγ, and a member of the DBP gene family of P. cynomolgi (PcyDBP1), the complete coding sequences of these genes were analyzed from Thai field isolates and compared with the publicly available DBP sequences of P. vivax (PvDBP). The complete coding sequences of PkDBPα (n=11), PkDBPβ (n=11), PkDBPγ (n=10) and PcyDBP1 (n=11) were obtained from direct sequencing of the PCR products. Nucleotide diversity of DBP is highly variable across malaria species. PcyDBP1 displayed the greatest level of nucleotide diversity while all PkDBP gene members exhibited comparable levels of diversity. Positive selection occurred in domains I, II and IV of PvDBP and in domain V of PcyDBP1. Although deviation from neutrality was not detected in domain II of PkDBPα, a signature of positive selection was identified in the putative DARC binding site in this domain. The DBP gene families seem to have arisen following the model of concerted evolution because paralogs rather than orthologs are clustered in the phylogenetic tree. The presence of identical or closely related repeats exclusive for the PkDBP gene family suggests that duplication of gene members postdated their divergence from the ancestral PcyDBP and PvDBP lineages. Intragenic recombination was detected in all DBP genes of these malaria species. Despite the limited number of isolates, P. knowlesi from Thailand shared phylogenetically related domain II sequences of both PkDBPα and PkDBPγ with those from Peninsular Malaysia, consistent with their geographic proximity.
    Matched MeSH terms: Merozoites
  11. Chew CH, Lim YAL, Chua KH
    PeerJ, 2017;5:e3794.
    PMID: 28929019 DOI: 10.7717/peerj.3794
    BACKGROUND: Plasmodium is an obligate intracellular parasite. Apical membrane antigen 1 (AMA1) is the most prominent and well characterized malarial surface antigen that is essential for parasite-host cell invasion, i.e., for sporozoite to invade and replicate within hepatocytes in the liver stage and merozoite to penetrate and replicate within erythrocytes in the blood stage. AMA1 has long served as a potent antimalarial drug target and is a pivotal vaccine candidate. A good understanding of the structure and molecular function of this Plasmodium protein, particularly its involvement in host-cell adhesion and invasion, is of great interest and hence it offers an attractive target for the development of novel therapeutics. The present study aims to heterologous express recombinant Plasmodium AMA1 ectodomain of P. vivax (rPvAMA1) for the selection of binding peptides.

    METHODS: The rPvAMA1 protein was heterologous expressed using a tag-free Profinity eXact(TM) system and codon optimized BL21-Codon Plus (DE3)-RIL Escherichia coli strain and further refolded by dialysis for renaturation. Binding peptides toward refolded rPvAMA1 were panned using a Ph.D.-12 random phage display library.

    RESULTS: The rPvAMA1 was successfully expressed and refolded with three phage-displayed dodecapeptides designated as PdV1 (DLTFTVNPLSKA), PdV2 (WHWSWWNPNQLT), and PdV3 (TSVSYINNRHNL) with affinity towards rPvAMA1 identified. All of them exhibited positive binding signal to rPvAMA1 in both direct phage assays, i.e., phage ELISA binding assay and Western blot binding assay.

    DISCUSSION: Phage display technology enables the mapping of protein-protein interactions based on a simple principle that a library of phage particles displaying peptides is used and the phage clones that bind to the target protein are selected and identified. The binding sites of each selected peptides toward PvAMA1 (Protein Data Bank, PDB ID: 1W8K) were in silico predicted using CABS-dock web server. In this case, the binding peptides provide a valuable starting point for the development of peptidomimetic as antimalarial antagonists directed at PvAMA1.

    Matched MeSH terms: Merozoites
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links