Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Gurdeep Singh HK, Yusup S, Quitain AT, Abdullah B, Ameen M, Sasaki M, et al.
    Environ Res, 2020 07;186:109616.
    PMID: 32668556 DOI: 10.1016/j.envres.2020.109616
    Catalytic cracking of vegetable oil mainly processed over zeolites, and among all the zeolites particularly HZMS-5 has been investigated on wide range for renewable and clean gasoline production from various plant oils. Despite the fact that HZSM-5 offers a higher conversion degree and boost aromatics yield, the isomerate yield reduces due to high cracking activity and shape selectivity of HZSM-5. Hence, to overcome these problems, in this study the transition metals, such as nickel and copper doped over HZSM-5 were tested for its efficiencies to improve the isoparaffin compounds. The catalysts were screened with linoleic acid in a catalytic cracking reaction conducted at 450 ᵒC for 90 min in an atmospheric condition in batch reactor. Then, the gasoline composition of the organic liquid product (OLP) was analysed in terms of paraffin, isoparaffin, olefin, naphthenes and aromatics (PIONA). The results showed that Cu/ZSM-5 produced the highest liquid yield of 79.1%, at the same time reduced the production of gas and coke to 18.8% and 0.7%. Furthermore, the desired isoparaffin composition in biogasoline increased from 1.6% to 6.8% and at the same time reduced the oxygenated and aromatic compounds to 15.4% and 59.7%, respectively. The linoleic acid as model compound of rubber seed oil, in the catalytic cracking reaction provides a clearer understanding of the process. Besides, the water gas shift (WGS) reaction in catalytic cracking reaction provides insitu hydrogen production to saturate the branched olefin into the desired isoparaffin and the aromatics into naphthenes.
    Matched MeSH terms: Linoleic Acid*
  2. Chen JW, Liew FF, Tan HW, Misran M, Chung I
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):346-360.
    PMID: 37524112 DOI: 10.1080/21691401.2023.2237534
    Extracellular vesicles (EVs) are small vesicles that are naturally released by cells and play a crucial role in cell-to-cell communication, tissue repair and regeneration. As naturally secreted EVs are limited, liposomes with different physicochemical properties, such as 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and linoleic acid (LA) with modifications have been formulated to improve EVs secretion for in vitro wound healing. Various analyses, including dynamic light scattering (DLS) and transmission electron microscopy (TEM) were performed to monitor the successful preparation of different types of liposomes. The results showed that cholesterol-LA liposomes significantly improved the secretion of EVs from immortalized adipose-derived mesenchymal stem cells (AD-MSCs) by 1.5-fold. Based on the cell migration effects obtained from scratch assay, both LA liposomal-induced EVs and cholesterol-LA liposomal-induced EVs significantly enhanced the migration of human keratinocytes (HaCaT) cell line. These findings suggested that LA and cholesterol-LA liposomes that enhance EVs secretion are potentially useful and can be extended for various tissue regeneration applications.
    Matched MeSH terms: Linoleic Acid/analysis; Linoleic Acid/metabolism
  3. Norazah, M.A., Rahmani, M., Khozirah, S., Ismail, H.B.M., Sukari, M.A., Ali, A.M., et al.
    MyJurnal
    The extract of Cinnamomum microphyllum showed strong antioxidant activity when it was tested against auto-oxidation of linoleic acid, superoxide, and DPPH radical scavenging activity. Further detailed investigations of the plant constituents and bioactivity studies led to the isolation and identification of known compounds consisting of three lignans, a coumarin, an ester and β-sitosterol. The structures of the compounds were determined using detailed spectroscopic analysis. The lignans were found to possess a significant antioxidant activity when tested against the three assay systems.
    Matched MeSH terms: Linoleic Acid
  4. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
    Matched MeSH terms: Linoleic Acid/chemistry*
  5. Aziz AA, Nordin FNM, Zakaria Z, Abu Bakar NK
    J Cosmet Dermatol, 2022 Jan;21(1):71-84.
    PMID: 34658114 DOI: 10.1111/jocd.14402
    BACKGROUND: The use of cosmetic products is considered a necessity for beautification in our daily lives. Cosmetic products composed of natural oils or fats as a main ingredient for various beneficial properties. Fats and oils are composed of various type of fatty acids with different compositions. Hence, fatty acids profile can be an effective chemical fingerprint for authentication analysis of cosmetic products.

    OBJECTIVE: This systematic review aims to enlighten the current detection tools developing for fatty acids profile authentication analyses of cosmetic ingredients based on the effectiveness, halal status, safety, advantages and disadvantages of the methods.

    METHODOLOGY: The data were extracted from the scientific literatures published between October 2015 and 2020 in the Web of Science, Scopus and Google Scholar databases, and analyzed with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

    FINDINGS: Based on the systemic literature reviews, essential oil, argan oil, mineral oil, vegetable oil, and jojoba oil were among the mostly studied ingredients in cosmetics. Furthermore, a combination of more than one analytical instrument was utilized to profile fatty acids while the determination of the origin of the fatty acids is under scrutiny. The portable mass spectrometer combined with a direct inlet membrane (DIM) probe seems to be the best tool in terms of time consumption, cost, requires no sample preparation with high efficiency. The current review showed that the best cosmetic base is when the oil is composed of high concentration of fatty acids such as linoleic, oleic, stearic acid, and palmitic acids with concentration range from 19.7 - 46.30%, which offers various beneficial properties to cosmetic products.

    Matched MeSH terms: Linoleic Acid
  6. Kara J, Suwanhom P, Wattanapiromsakul C, Nualnoi T, Puripattanavong J, Khongkow P, et al.
    Arch Pharm (Weinheim), 2019 Jul;352(7):e1800310.
    PMID: 31125474 DOI: 10.1002/ardp.201800310
    Sixteen novel coumarin-based compounds are reported as potent acetylcholinesterase (AChE) inhibitors. The most active compound in this series, 5a (IC50 0.04 ± 0.01 µM), noncompetitively inhibited AChE with a higher potency than tacrine and galantamine. Compounds 5d, 5j, and 5 m showed a moderate antilipid peroxidation activity. The compounds showed cytotoxicity in the same range as the standard drugs in HEK-293 cells. Molecular docking demonstrated that 5a acted as a dual binding site inhibitor. The coumarin moiety occupied the peripheral anionic site and showed π-π interaction with Trp278. The tertiary amino group displayed significant cation-π interaction with Phe329. The aromatic group showed π-π interaction with Trp83 at the catalytic anionic site. The long chain of methylene lay along the gorge interacting with Phe330 via hydrophobic interaction. Molecular docking was applied to postulate the selectivity toward AChE of 5a in comparison with donepezil and tacrine. Structural insights into the selectivity of the coumarin derivatives toward huAChE were explored by molecular docking and 3D QSAR and molecular dynamics simulation for 20 ns. ADMET analysis suggested that the 2-(2-oxo-2H-chromen-4-yl)acetamides showed a good pharmacokinetic profile and no hepatotoxicity. These coumarin derivatives showed high potential for further development as anti-Alzheimer agents.
    Matched MeSH terms: Linoleic Acid/antagonists & inhibitors; Linoleic Acid/metabolism
  7. Teh SS, Hock Ong AS, Mah SH
    J Oleo Sci, 2017;66(11):1183-1191.
    PMID: 29093377 DOI: 10.5650/jos.ess17078
    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.
    Matched MeSH terms: Linoleic Acid/analysis; Linoleic Acid/isolation & purification
  8. Daud AZ, Mohd-Esa N, Azlan A, Chan YM
    Asia Pac J Clin Nutr, 2013;22(3):431-42.
    PMID: 23945414 DOI: 10.6133/apjcn.2013.22.3.09
    Excessive intake of trans fatty acids (TFA) could reduce the fat density of human milk and impair the desaturation of essential fatty acids. Because the mammary glands are unable to synthesize TFA, it is likely that the TFA in human milk come from dietary intake. Thus, the aim of this study was to investigate the sources of TFA intake for lactating mothers in one of the urban areas in Selangor. In this cross-sectional study, anthropometric measurements, FFQ including 7 food groups and dietary consumption data were collected from 101 lactating mothers. Five major TFA isomers (palmitoelaidic acid (16:1t9), petroselaidic acid (18:1t6), elaidic acid (18:1t9), vaccenic acid (18:1t11) and linoelaidic acid (18:2t9,12) in human milk were measured by gas chromatography (GC). The relationship between food consumption and TFA levels was assessed using the non-parametric Spearman's rho test. The TFA content in human milk was 2.94±0.96 (SEM) % fatty acid; this is considered low, as it is lower than 4%. The most abundant TFA isomer was linoelaidic acid (1.44±0.60% fatty acid). A sub-experiment (analyzing 3 days of composite food consumption) was conducted with 18 lactating mothers, and the results showed that linoelaidic acid was the most common TFA consumed (0.07±0.01 g/100 g food). Only 10 food items had an effect on the total TFA level and the isomers found in human milk. No association was found between TFA consumption and the TFA level in human milk.
    Matched MeSH terms: Linoleic Acid/administration & dosage; Linoleic Acid/analysis
  9. Uddin S, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Chem Commun (Camb), 2020 Oct 19.
    PMID: 33073787 DOI: 10.1039/d0cc04491a
    We report a new series of lipid-based biocompatible ionic liquids (LBILs) consisting of the long-chain phosphonium compound 1,2-dimyristoyl-sn-glycero-3-ethyl-phosphatidylcholine as the cation and the long-chain fatty acids stearic acid, oleic acid, or linoleic acid as anions. These materials were found to be completely miscible with many polar and nonpolar organic solvents as well as dispersible in water. These LBILs also exhibited excellent biocompatibility with an artificial three-dimensional human epidermis model.
    Matched MeSH terms: Linoleic Acid
  10. Alireza, S., Tan, C.P., Hamed, M., Che Man, Y.B.
    MyJurnal
    The main objective of the present study was to investigate the effects of the frying media and storage time on the fatty acid composition (FAC) and iodine value (IV) of deep-fat fried potato chips. The frying experiment was conducted at 180ºC for five consecutive days. Six frying media were considered as the main treatments: refined, bleached, deodorized (RBD) palm olein (A), canola oil (C), RBD palm olein/sesame oil (AB, 1:1 w/w), RBD palm olein/canola oil (AC, 1:1, w/w), sesame oil/canola oil (BC, 1:1, w/w), and RBD palm olein/sesame oil/canola oil (ABC, 1:1:1, w/w/w). The initial degrees of unsaturation of the consumed oils, A, C, AB, AC, BC, and ABC, were 58.6, 94.0, 68.0, 72.2, 87.7, and 75.8 (g/100 g), respectively. The fatty acid analysis showed that there was a decrease in both the linolenic acid (C18:3) and linoleic acid (C18:2) contents, whereas the palmitic acid (C16:0) increased with a prolonged frying time. The chemical analysis showed that there was a significant (p < 0.05) difference in terms of the IV for each frying oil during the five consecutive days of frying (day 0 to 5). Oil C had the least stability in terms of deep-fat frying due to a high level of unsaturated fatty acids. Conversely, oil AC had the best stability due to the smallest reduction of the C18:2/C16:0 ratio and the IV.
    Matched MeSH terms: Linoleic Acid
  11. Afida, T., Mamot, S.
    MyJurnal
    Chicken fat is a potential bioresource that can be developed into a commercial product. In this study, chicken fat, which is rich in unsaturated fatty acids, including oleic acid (C18:1) and linoleic acid (C18:2), was enzymatically interesterified with corn oil to produce a soft spread. Two interesterified products, sample 16 (4% enzyme, 4:1 mole ratio of chicken fat to corn oil, 50°C and 42 h of the interesterification process) and sample 17 (4% enzyme, 2:1 mole ratio of chicken fat to corn oil, 30°C and 42 h of the interesterification process), were selected based on the highest SFC at 30oC which were close to SFC values of commercial product. A morphological study showed that the final products had smaller and less dense fat particles, which explained the lower melting temperatures and solid fat content (3.2 and 3.5% for samples 16 and 17, respectively, at 20°C) compared to the commercial products (9.7, 6.8 and 7.7% for products A, B and C, respectively, at 20°C). However, both sample 16 and 17 had similar thermal properties to a vegetable-oil-based commercial product, with melting enthalpies (ΔH) of 58.45 J/g and 71.40 J/g, and were fully melted at 31.40°C and 35.41°C, respectively.
    Matched MeSH terms: Linoleic Acid
  12. Yan, S.W., Asmah, R.
    MyJurnal
    Synthetic antioxidants are added to food in the powdered form to preserve it. However these compounds posed serious health concern since they have been associated with causing cancer. Thus using fresh herbs with antioxidant activities would be good alternative. The objectives of this study were to evaluate and compare the total phenolic contents and antioxidant activities of both powdered and fresh forms of turmeric leaf, pandan leaf and torch ginger flower. Total phenolic content (TPC) was assayed based on the redox reaction between Folin-Ciocalteu with phenolics in the sample extracts. Antioxidant activity (AA) was assayed using the ß-carotene linoleate model system and the percentage of antioxidant activity was calculated from the values of degradation rate. Scavenging activity (SA) was assayed using the DPPH radical scavenging model system whereby EC50 value was determined from the plotted graph of scavenging activity against the concentration of sample extracts. Analyses revealed that powdered forms of turmeric leaf, pandan leaf and torch ginger flower had higher TPC (2013.09 ± 5.13, 1784.25 ± 7.59 and 1937.42 ± 6.61 mg GAE/100g, respectively) than their respective fresh forms (348.75 ± 1.26, 356.42 ± 1.32 and 211.59 ± 6.29 mg GAE/100g, respectively). Similarly, powdered forms of turmeric leaf, pandan leaf and torch ginger flower possessed better AA (64.31 ± 0.99, 65.09 ± 0.74 and 11.80 ± 0.40 %, respectively) than their respective fresh forms (24.93 ± 0.71, 16.91 ± 0.70 and 1.45 ± 0.10 %, respectively). Powdered forms of turmeric leaf, pandan leaf and torch ginger flower were also better radical scavenger as compared to their respective fresh forms. In conclusion, all samples in their powdered forms have high total phenolic contents, antioxidant and scavenging activities than their respective fresh forms.
    Matched MeSH terms: Linoleic Acid
  13. Nurul, S. R., Asmah, R.
    MyJurnal
    Preservative fruits have gained popularity in recent years as part of food consumption, but their benefits towards human health are not known. This study compared total phenolic (TPC), total flavonoid (TFC), β-carotene, lycopene, ascorbic acid (AA) contents and antioxidant properties between fresh and pickled papaya. The results indicated that mean TPC (mg gallic acid equivalent/100 g dry samples), TFC (mg rutin equivalent/100 g dry samples), β-carotene (µg/100 g edible portions), lycopene (µg/100 g edible portions) and AA content (mg/100 g edible portions) were higher in fresh papaya (141.66 ± 11.71; 57.80 ± 2.11; 793.83 ± 5.47; 779.69 ± 5.55; 70.37 ± 0.65) as compared to pickled form. Antioxidant activity (%) measured by DPPH and β-Carotene-Linoleate bleaching method was higher in fresh papaya (56.83 ± 4.68; 77.56 ± 1.40). Total phenolic, total flavonoid, ascorbic acid, beta carotene and lycopene were strongly correlated with antioxidant activity and scavenging activity (0.905 ≤ r ≤ 1.00) indicating that were important contributors to antioxidant properties in papaya extracts. The pickling process of papaya caused a significant decrease in their antioxidant component and activity
    Matched MeSH terms: Linoleic Acid
  14. Choo YM
    Sains Malaysiana, 2017;46:1581-1586.
    Crotalaria pallida Aiton is an herbaceous legume from the family Fabaceae. In the present study, one new cyclopentyliene, crotolidene (1) and seven known compounds, i.e. hydroxydihydrobovolide (2), octacosane (3), trans-phytyl palmitate (4), linoleic acid (5), methyl oleate (6), ethyl palmitate (7), and palmitic acid (8) were isolated from the C. pallida collected from Perak, Malaysia. These compounds were isolated and characterized using extensive chromatographic and spectroscopic methods.
    Matched MeSH terms: Linoleic Acid
  15. Chang TS, Yunus R, Rashid U, Choong TS, Awang Biak DR, Syam AM
    J Oleo Sci, 2015;64(2):143-51.
    PMID: 25748374 DOI: 10.5650/jos.ess14162
    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance.
    Matched MeSH terms: Linoleic Acid/chemistry
  16. Tang KS
    Lipids Health Dis, 2014 Dec 19;13:197.
    PMID: 25522984 DOI: 10.1186/1476-511X-13-197
    BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson's disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined.

    METHODS: Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

    RESULTS: Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone.

    CONCLUSIONS: Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson's disease.

    Matched MeSH terms: Linoleic Acid/pharmacology*
  17. Shofian NM, Hamid AA, Osman A, Saari N, Anwar F, Dek MS, et al.
    Int J Mol Sci, 2011;12(7):4678-92.
    PMID: 21845104 DOI: 10.3390/ijms12074678
    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.
    Matched MeSH terms: Linoleic Acid/chemistry
  18. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, et al.
    J Oleo Sci, 2020 May 02;69(5):413-421.
    PMID: 32281562 DOI: 10.5650/jos.ess19298
    Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.
    Matched MeSH terms: Linoleic Acid/analysis
  19. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
    Matched MeSH terms: Linoleic Acid/chemistry*
  20. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
    Matched MeSH terms: Linoleic Acid/analysis; Linoleic Acid/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links