METHODS: A total of 54 patients (8-79 years) with intracranial haemorrhage who underwent both CT examination and six-vessel cerebral angiography were studied over a 2-year period. Cerebral angiography was repeated within 6 weeks if the first angiogram was negative.
RESULTS: Angiography detected vascular lesions in 50% of cases (aneurysm 38.9% and arteriovenous malformation, AVM, 11.1%). In the aneurysm group, angiographic yield was 34.3% whereas in the AVM group, it was 37.9%. Subarachnoid haemorrhage (SAH) combined with other types of haemorrhage (such as intracerebral haemorrhage, ICH) was not significantly correlated with the likelihood of finding a vascular lesion, both aneurysm and AVM (p = 0.157). Age less than 50 years had significant correlation (p = 0.021) in the AVM group as well as in the aneurysm group (p < 0.001). A history of hypertension was associated with both aneurysm (p = 0.039) and AVM (p = 0.008). No patients with deep intracerebral haematoma had vascular lesions. The presence of an intravascular haemorrhage (IVH) had significant correlation with aneurysm (p = 0.008) but not AVM. There was no significant difference in mean age between patients with and without a vascular lesion (p = 0.134).
CONCLUSION: Cerebral angiography is justified in patients with ICH accompanied by pure SAH (p = 0.001). Other factors associated with finding a vascular lesion were a history of hypertension and the presence of IVH. Diagnostic cerebral angiography is indicated for patients with ICH and SAH and IVH with a history of hypertension, regardless of age.
METHODS: Blinded assessors coded baseline images for acute ischaemic signs (presence, extent, swelling and attenuation of acute lesions; and hyperattenuated arteries) and pre-existing changes (atrophy, leucoaraiosis and old ischaemic lesions). Logistic regression models assessed associations between imaging features and death at 7 and 90 days; good recovery (modified Rankin Scale scores 0-2 at 90 days) and sICH. Data are reported with adjusted ORs and 95% CIs.
RESULTS: 2916 patients (67±13 years, National Institutes of Health Stroke Scale 8 (5-14)) were included. Visible ischaemic lesions, severe hypoattenuation, large ischaemic lesion, swelling and hyperattenuated arteries were associated with 7-day death (OR (95% CI): 1.52 (1.06 to 2.18); 1.51 (1.01 to 2.18); 2.67 (1.52 to 4.71); 1.49 (1.03 to 2.14) and 2.17 (1.48 to 3.18)) and inversely with good outcome. Severe atrophy was inversely associated with 7-day death (0.52 (0.29 to 0.96)). Atrophy (1.52 (1.08 to 2.15)) and severe leucoaraiosis (1.74 (1.20 to 2.54)) were associated with 90-day death. Hyperattenuated arteries were associated with sICH (1.71 (1.01 to 2.89)). No imaging features modified the effect of alteplase dose.
CONCLUSIONS: Non-expert-defined brain imaging signs of brain frailty and acute ischaemia contribute to the prognosis of thrombolysis-treated AIS patients for sICH and mortality. However, these imaging features showed no interaction with alteplase dose.
METHODS: This is a prospective substudy nested within the CRASH-3 trial, a randomised placebo-controlled trial of TXA (loading dose 1 g over 10 min, then 1 g infusion over 8 hours) in patients with isolated head injury. CRASH-3 trial patients were recruited between July 2012 and January 2019. Participants in the current substudy were a subset of trial patients enrolled at 10 hospitals in the UK and 4 in Malaysia, who had at least one CT head scan performed as part of the routine clinical practice within 28 days of randomisation. The primary outcome was the volume of intraparenchymal haemorrhage (ie, contusion) measured on a CT scan done after randomisation. Secondary outcomes were progressive intracranial haemorrhage (post-randomisation CT shows >25% of volume seen on pre-randomisation CT), new intracranial haemorrhage (any haemorrhage seen on post-randomisation CT but not on pre-randomisation CT), cerebral infarction (any infarction seen on any type of brain scan done post-randomisation, excluding infarction seen pre-randomisation) and intracranial haemorrhage volume (intraparenchymal + intraventricular + subdural + epidural) in those who underwent neurosurgical haemorrhage evacuation. We planned to conduct sensitivity analyses excluding patients who were severely injured at baseline. Dichotomous outcomes were analysed using relative risks (RR) or hazard ratios (HR), and continuous outcomes using a linear mixed model.
RESULTS: 1767 patients were included in this substudy. One-third of the patients had a baseline GCS (Glasgow Coma Score) of 3 (n=579) and 24% had unilateral or bilateral unreactive pupils. 46% of patients were scanned pre-randomisation and post-randomisation (n=812/1767), 19% were scanned only pre-randomisation (n=341/1767) and 35% were scanned only post-randomisation (n=614/1767). In all patients, there was no evidence that TXA prevents intraparenchymal haemorrhage expansion (estimate=1.09, 95% CI 0.81 to 1.45) or intracranial haemorrhage expansion in patients who underwent neurosurgical haemorrhage evacuation (n=363) (estimate=0.79, 95% CI 0.57 to 1.11). In patients scanned pre-randomisation and post-randomisation (n=812), there was no evidence that TXA reduces progressive haemorrhage (adjusted RR=0.91, 95% CI 0.74 to 1.13) and new haemorrhage (adjusted RR=0.85, 95% CI 0.72 to 1.01). When patients with unreactive pupils at baseline were excluded, there was evidence that TXA prevents new haemorrhage (adjusted RR=0.80, 95% CI 0.66 to 0.98). In patients scanned post-randomisation (n=1431), there was no evidence of an increase in infarction with TXA (adjusted HR=1.28, 95% CI 0.93 to 1.76). A larger proportion of patients without (vs with) a post-randomisation scan died from head injury (38% vs 19%: RR=1.97, 95% CI 1.66 to 2.34, p<0.0001).
CONCLUSION: TXA may prevent new haemorrhage in patients with reactive pupils at baseline. This is consistent with the results of the CRASH-3 trial which found that TXA reduced head injury death in patients with at least one reactive pupil at baseline. However, the large number of patients without post-randomisation scans and the possibility that the availability of scan data depends on whether a patient received TXA, challenges the validity of inferences made using routinely collected scan data. This study highlights the limitations of using routinely collected scan data to examine the effects of TBI treatments.
TRIAL REGISTRATION NUMBER: ISRCTN15088122.