Displaying all 5 publications

Abstract:
Sort:
  1. Manin BO, Drakeley CJ, Chua TH
    PLoS One, 2018;13(8):e0202905.
    PMID: 30138386 DOI: 10.1371/journal.pone.0202905
    Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
    Matched MeSH terms: Insect Proteins/chemistry
  2. Faruck MO, Yusof F, Chowdhury S
    Peptides, 2016 06;80:80-88.
    PMID: 26093218 DOI: 10.1016/j.peptides.2015.06.001
    Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.
    Matched MeSH terms: Insect Proteins/chemistry
  3. Li XP, Lin D, Zhang Y, Chen SQ, Bai HQ, Zhang SN, et al.
    Trop Biomed, 2020 Mar 01;37(1):116-126.
    PMID: 33612723
    Several bioactive molecules isolated from the saliva of blood-sucking arthropods, such as mosquitoes, have been shown to exhibit potential anticoagulant function. We have previously identified a 30kDa allergen named Aegyptin-like protein (alALP), which is highly homologous to Aegyptin, from the salivary glands of female Aedes albopictus (Asian tiger mosquito). In this study, we identified the conserved functional domain of alALP by using bioinformatic tools, and expressed the His-tagged alALP recombinant protein in sf9 insect cells by generation and transfection of a baculoviral expression plasmid carrying the fulllength cDNA of alALP. We purified this recombinant protein and examined its function on the inhibition of blood coagulation. The results showed that the purified His-alALP prolonged the Activated Partial Thromboplastin Time (APTT), Prothrombin Time (PT) and Thrombin Time (TT) in vitro as well as the Bleeding Time (BT) in vivo, which suggest that alALP could be a novel anticoagulant.
    Matched MeSH terms: Insect Proteins/chemistry*
  4. Chee HY, AbuBakar S
    Biochem Biophys Res Commun, 2004 Jul 16;320(1):11-7.
    PMID: 15207695
    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to beta-tubulin and alpha-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells.
    Matched MeSH terms: Insect Proteins/chemistry*
  5. Hempolchom C, Sookrung N, Srisuka W, Reamtong O, Sakolvaree Y, Chaicumpa W, et al.
    Parasitol Res, 2019 Aug;118(8):2353-2359.
    PMID: 31263951 DOI: 10.1007/s00436-019-06383-x
    Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.
    Matched MeSH terms: Insect Proteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links