Displaying all 10 publications

Abstract:
Sort:
  1. Ruszymah BH, Zaiton Z, Aminuddin S, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 2001;109(4):227-30.
    PMID: 11453035
    The aim of this study was to investigate the effect of altered thyroid status on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD type 1) and type 2 (11beta-HSD type 2) bioactivity in rat kidney and colon. Male Sprague-Dawley rats (250 g) were treated with either L-thyroxine (T4) or propylthiouracil (PTU) for 4 weeks. Blood were then analysed for serum thyroxine, sodium (Na+) and potassium (K+). The kidneys and colon were assayed for 11beta-HSD type 1 and 11beta-HSD type 2 bioactivity. In T4 treated rats the serum thyroxine was significantly elevated (p<0.05) whilst PTU decreased serum thyroxine significantly (p<0.001) compared to controls. Serum Na+ and K+ were within normal limits. There were no significant changes in 11beta-HSD type 1 bioactivity in both treatment groups compared to controls. However, the 11beta-HSD type 2 bioactivity in rats given thyroxine was significantly higher in the colon (p<0.003) compared to controls. We conclude that altered thyroid status had no effect on 11beta-HSD type 1 bioactivity but 11beta-HSD type 2 bioactivity was elevated in the colon of rats given supplementary thyroxine.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  2. Nwe KH, Morat PB, Hamid A, Fadzilah S, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 1999;107(5):288-94.
    PMID: 10482040
    The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) protects the testis from the inhibitory effects of corticosterone on testosterone (T) production. The objectives of the present studies were to determine the effects of deoxycorticosterone (DOC) and its mechanism of actions on testicular 11beta-HSD activity and plasma T levels after 7 days of treatment. The results revealed that at the end of 7 days treatment, DOC significantly increased testicular 11beta-HSD activity and plasma T levels in normal rats. However, the time course showed that high plasma T levels lowered 11beta-HSD activity on day 14 and by 21 days both the levels normalized. In adrenalectomized (ADX) rats, only the enzyme activity increased significantly but not plasma T levels. Spironolactone, a competitive inhibitor of mineralocorticoid receptor (MR), did not change testicular 11beta-HSD activity in both normal and DOC treated rats suggesting that DOC did not act through MR in increasing 11beta-HSD activity. On the other hand, spironolactone significantly decreased plasma T levels in DOC treated rats. Progesterone (P), a competitive inhibitor of glucocorticoid receptors (GR) or corticosterone significantly suppressed testicular enzyme activity and plasma T levels in DOC treated normal rats. Carbenoxolone which is an inhibitor of 11beta-HSD activity significantly depressed testicular 11beta-HSD activity and plasma T levels in DOC treated normal rats. This paper suggests that DOC increased testicular 11beta-HSD activity through GR; whilst increase in plasma T levels required functioning adrenal glands. The testicular 11beta-HSD is one of the regulators of T levels and vice versa.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  3. Nwe KH, Norhazlina AW, Hamid A, Morat PB, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 2000;108(5):369-77.
    PMID: 10989957
    The effects of stress and corticosterone on testicular 11beta-hydroxysteroid dehydrogenase (11beta-HSD) oxidative activity have been controversial, whilst that of adrenocorticotrophic hormone (ACTH) have not been investigated before. Hence, the aim of the present study was to determine the in vivo effects of stress due to injection and sham operation, ACTH and corticosterone on testicular and hepatic 11beta-HSD oxidative activity and plasma testosterone levels in normal and adrenalectomized (ADX) rats and their possible mechanism of actions. Adrenalectomy reduced both testicular 11beta-HSD oxidative activity and plasma testosterone levels. The effects of injection and sham operation significantly increased plasma corticosterone levels with decreased testicular 11beta-HSD oxidative activity and plasma testosterone levels in normal but not in ADX rats. Likewise. ACTH or corticosterone treatment for 7 days decreased both testicular 11beta-HSD oxidative activity in a dose dependent manner and plasma testosterone levels in normal rats; but the values in ADX rats remained unchanged. However, none of the above values were significantly lower than that of the ADX levels. Corticosterone seems to maintain testicular 11beta-HSD oxidative activity within the range between normal and ADX rats. These changes are not attributable to diurnal rhythms, as the time of sacrifice has been fixed between 8:30 and 10:30 am. In the liver, no significant change in 11beta-HSD oxidative activity was observed with sham operation, ACTH or corticosterone treatment; but adrenalectomy significantly decreased it. In conclusion, in the intact normal rats, stress, ACTH or corticosterone modulates testicular (but not hepatic) 11beta-HSD oxidative activity indirectly through the adrenal glands and the physiological level of corticosterone is ideal for normal reproductive functions.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  4. Nwe KH, Hamid A, Morat PB, Khalid BA
    Steroids, 2000 Jan;65(1):40-5.
    PMID: 10624835
    11Beta-hydroxysteroid dehydrogenase (11beta-HSD) Type I enzyme is found in testis and liver. In Leydig cell cultures, 11beta-HSD activity is reported to be primarily oxidative while another report concluded that is primarily reductive. Hepatic 11beta-HSD preferentially catalyzes reduction and the reaction direction is unaffected by the external factors. Recent analysis of testicular 11beta-HSD revealed two kinetically distinct components. In the present study, various steroid hormones or glycyrrhizic acid (GCA), given for 1 week, or thyroxine given for 5 weeks to normal intact rats had different effects on the 11beta-HSD oxidative activity in testis and liver. Deoxycorticosterone, dexamethasone, progesterone, thyroxine, and clomiphene citrate increased testicular 11beta-HSD oxidative activity, but decreased hepatic enzyme activity except for deoxycorticosterone (unchanged). Corticosterone and testosterone decreased 11beta-HSD oxidative activity in testis but not that of liver (which was unchanged). Estradiol, GCA and adrenalectomy lowered oxidative activity of 11beta-HSD in testis and liver, but the degrees of reduction were different. The in vivo effects of glucocorticoids too were different, even in the same organ. Dexamethasone, a pure glucocorticoid, has greater affinity for glucocorticoid receptors (GR) than corticosterone. The direct effects of dexamethasone via GR in increasing testicular 11beta-HSD oxidative activity may override its indirect effects. Possibly, the reverse occurs with corticosterone treatment, as it has both glucocorticoid and mineralocorticoid effects. Because both organs have Type I isoenzyme, the difference in 11beta-HSD oxidative activities of these two organs could be attributable to the presence of an additional isozyme in testis or differences in tissue-specific regulatory mechanisms.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  5. Nwe KH, Morat PB, Khalid BA
    Gen. Pharmacol., 1997 May;28(5):661-4.
    PMID: 9184798
    1. Sex steroids have been shown to regulate the biosynthesis of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). 2. In vitro studies showed that oestradiol (E2) or testosterone (T) can interfere with the bioassay of enzyme activity, but not progesterone (P4). 3. For in vivo studies, the activity of 11 beta-HSD in the testis of normal and adrenalectomized (ADX) adult male Wistar rats was determined following a daily IM injection of sex steroids for 7 days. 4. The 11 beta-HSD activity was significantly reduced (P < 0.01) either by E2 or T in normal and ADX rats. The enzyme activity in normal rats given both T and E2 was even lower (P < 0.001) than when E2 was given alone. 5. P4 given to normal and ADX rats increased the enzyme activity higher than normal (P < 0.001). 6. The presence of corticosteroids influenced the effects of E2, but not of T and P4, on 11 beta-HSD activity. 7. E2 and T downregulate 11 beta-HSD activity, whereas P4 increased it. E2 did not act through lowering T level.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  6. Azmahani A, Nakamura Y, Ozawa Y, McNamara KM, Fujimura T, Haga T, et al.
    Hum Pathol, 2015 Nov;46(11):1662-9.
    PMID: 26359540 DOI: 10.1016/j.humpath.2015.07.007
    Extramammary Paget disease (EMPD) has been known to frequently express androgen receptor (AR). Therefore, androgens could play roles in the biological behavior of Paget cells. 5α-Reductase (5α-red) types 1 and 2 and 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) are pivotal in situ regulators of androgen production in androgen-responsive tissues including androgen-dependent neoplasms. Therefore, in this study, we immunolocalized AR, androgen-producing enzymes, and their transcription factors to assess the state of in situ androgen production and actions and its correlation of invasiveness in EMPD. We studied 51 cases of EMPD with known clinicopathological status. AR, 5α-red1, 17β-HSD5, and β-catenin immunoreactivity was evaluated by using the modified H-score method while cyclin D1, p53, forkhead box protein P1, and a proliferation marker, Ki-67, were quantified using labeling index. The mean scores of AR, 5α-red1, and 17β-HSD5 in invasive EMPD were all significantly higher than noninvasive EMPD (P < .0001). Ki-67 labeling index as well as the cyclin D1 score was also significantly higher in invasive than noninvasive lesions of EMPD. These results demonstrated that androgen receptor and androgen-producing enzymes were both associated with cell cycle regulation and subsequently the invasiveness of EMPD lesions and could also indicate those above as potential markers of invasive potentials in EMPD.
    Matched MeSH terms: 17-Hydroxysteroid Dehydrogenases/metabolism
  7. Idrus RB, Mohamad NB, Morat PB, Saim A, Abdul Kadir KB
    Steroids, 1996 Aug;61(8):448-52.
    PMID: 8870163
    11 beta-Hydroxysteroid dehydrogenase (11 beta-OHSD) is a microsomal enzyme that catalyzes the dehydrogenation of cortisol (F) to cortisone (E) in man and corticosterone (B) to 11-dehydrocorticosterone (A) in rats. 11 beta-OHSD has been identified in a wide variety of tissues. The differential distribution of 11 beta-OHSD suggests that this enzyme has locally defined functions that vary from region to region. The aim of this study was to investigate the effects of the glucocorticoids B and dexamethasone (DM), the mineralocorticoid deoxycorticosterone (DOC), and the inhibitors of 11 beta-OHSD glycyrrhizic acid (Gl) and glycyrrhetinic acid (GE) on 11 beta-OHSD bioactivity at the hypothalamus (HT) and anterior pituitary (AP). Male Wistar rats were treated with GI or were adrenalectomized (ADX) and treated with either B, DM, or DOC for 7 days. All treatments were in vivo except GE, which was used in vitro. At the end of treatment, homogenates of HT and AP were assayed for 11 beta-OHSD bioactivity, expressed as the percentage conversion of B to A in the presence of NADP, 11 beta-OHSD bioactivity is significantly higher (P < 0.0001) in the AP compared with the HT. Adrenalectomy significantly increased the enzyme activity in the AP (P < 0.05), an effect reversed by B or DM. ADX rats treated with DOC showed decreased enzyme activity in the AP (P < 0.001) but increased the activity in the HT (P < 0.0001). Gl increased activity in both HT and AP, whereas GE decreased activity significantly. We conclude that the modulation of 11 beta-OHSD is both steroid specific and tissue specific.
    Matched MeSH terms: Hydroxysteroid Dehydrogenases/metabolism*
  8. Chia YY, Yin YY, Ton SH, Kadir KB
    Exp. Clin. Endocrinol. Diabetes, 2010 Oct;118(9):617-24.
    PMID: 19998240 DOI: 10.1055/s-0029-1237703
    Glycyrrhizic acid (GA) has been reported to inhibit postprandial blood glucose rise and 11 β-hydroxysteroid dehydrogenase 1 (11 βHSD1) activity. As not much work has been done on GA effects on 11 βHSD1 and 2 and HOMA-IR at different treatment periods, this work was conducted. 60 male Sprague Dawley rats fed AD LIBITUM were assigned into six groups of control and treated that were given GA at different duration namely 12, 24 and 48 h. Treated and control groups were intraperitoneally administered with GA (50 mgkg (-1)) and saline respectively. Blood and subcutaneous (ATS) and visceral adipose tissue (ATV), abdominal (MA) and quadriceps femoris muscle (MT), liver (L) and kidney (K) were examined. HOMA-IR in GA-treated rats decreased in all groups (P<0.05). In the 12-h and 24-h treated rats, 11 βHSD1 activities decreased in all tissues (P<0.05) except MA and MT (P>0.05) in the former and ATV (P>0.05) in the latter. However, 11 βHSD1 activities decreased significantly in all tissues ( P<0.05) in the 48-h treated rats. Significant decrease in 11 βHSD2 (P>0.05) activities were observed in the L of all treatment groups and K in the 24-h and 48-h treated rats (P<0.05). Histological analysis on ATS showed increase in the number of small-size adipocytes while ATV adipocytes showed shrinkage after GA administration. Increased glycogen deposition in the L was observed in the GA-administered rats in all the treatment periods. In conclusion, GA treatment showed a decrease in the HOMA-IR and both 11 βHSD1 and 2 activities in all tissues, with more profound decrease in the 48-h treated rats.
    Matched MeSH terms: 11-beta-Hydroxysteroid Dehydrogenases/metabolism*
  9. Ramli ES, Suhaimi F, Asri SF, Ahmad F, Soelaiman IN
    J. Bone Miner. Metab., 2013 May;31(3):262-73.
    PMID: 23274351 DOI: 10.1007/s00774-012-0413-x
    Rapid onset of bone loss is a frequent complication of systemic glucocorticoid therapy which may lead to fragility fractures. Glucocorticoid action in bone depends upon the activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). Regulations of 11β-HSD1 activity may protect the bone against bone loss due to excess glucocorticoids. Glycyrrhizic acid (GCA) is a potent inhibitor of 11β-HSD. Treatment with GCA led to significant reduction in bone resorption markers. In this study we determined the effect of GCA on 11β-HSD1 activity in bones of glucocorticoid-induced osteoporotic rats. Thirty-six male Sprague-Dawley rats (aged 3 months and weighing 250-300 g) were divided randomly into groups of ten. (1) G1, sham operated group; (2) G2, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral vehicle normal saline vehicle; and (3) G3, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral GCA 120 mg/kg/day The results showed that GCA reduced plasma corticosterone concentration. GCA also reduced serum concentration of the bone resorption marker, pyridinoline and induced 11β-HSD1 dehydrogenase activity in the bone. GCA improved bone structure, which contributed to stronger bone. Therefore, GCA has the potential to be used as an agent to protect the bone against glucocorticoid induced osteoporosis.
    Matched MeSH terms: 11-beta-Hydroxysteroid Dehydrogenases/metabolism
  10. Jayachandra S, D'Souza UJ
    PMID: 23758154
    The objective of this study was to study the possible reproductive adverse effects of the diazinon on rat offspring exposed in utero and during lactation. Dams were gavaged daily (10, 15, and 30 mg/kg) before mating, during mating, and during pregnancy and lactation in separate groups. Reproductive outcome data of dams were examined. Body weight, testis weight, testicular marker enzyme activities (alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase), qualitative and quantitative testicular and epididymal histology, and immunohistochemisty for 3-β-hydroxysteroid dehydrogenase (HSD) were examined in male offspring at puberty and adulthood. The 30-mg/kg dose induced significant adverse effects at both puberty and adulthood in offspring. At puberty the male offspring showed a decrease in testicular weight, degenerative changes, and 3-β-HSD. Moreover, an increase in activity of alkaline and acid phosphatase also was observed. At adulthood, there was a decrease in testicular weight and 3-β-HSD with an increase in the levels of testicular marker enzyme. There was evidence of some adverse reproductive effects in male offspring at the 15-mg/kg dose. Most of the adverse effects were irreversible and were evident at both puberty and adulthood in offspring, although a few parameters reverted back to the normal growth pattern. Hence, diazinon is a reproductive toxicant in male offspring, which caused significant damage to the testes when exposed during prenatal and postnatal life.
    Matched MeSH terms: 3-Hydroxysteroid Dehydrogenases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links