Displaying all 6 publications

Abstract:
Sort:
  1. Lai ZW, Rahim RA, Ariff AB, Mohamad R
    J Biosci Bioeng, 2012 Sep;114(3):286-91.
    PMID: 22608992 DOI: 10.1016/j.jbiosc.2012.04.011
    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used.
    Matched MeSH terms: Hyaluronic Acid/chemistry*
  2. Baba Ismail YM, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ
    Colloids Surf B Biointerfaces, 2017 Nov 01;159:445-453.
    PMID: 28837894 DOI: 10.1016/j.colsurfb.2017.07.086
    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications.
    Matched MeSH terms: Hyaluronic Acid/chemistry
  3. Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, et al.
    Drug Discov Today, 2017 Apr;22(4):665-680.
    PMID: 28017836 DOI: 10.1016/j.drudis.2016.12.009
    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
    Matched MeSH terms: Hyaluronic Acid/chemistry*
  4. Zhuo F, Abourehab MAS, Hussain Z
    Carbohydr Polym, 2018 Oct 01;197:478-489.
    PMID: 30007638 DOI: 10.1016/j.carbpol.2018.06.023
    Nano-delivery systems have gained remarkable recognition for targeted delivery of therapeutic payload, reduced off-target effects, and improved biopharmaceutical profiles of drugs. Therefore, we aimed to fabricate polymeric nanoparticles (NPs) to deliver tacrolimus (TCS) to deeper layers of the skin in order to alleviate its systemic toxicity and improved therapeutic efficacy against atopic dermatitis (AD). To further optimize the targeting efficiency, TCS-loaded NPs were coated with hyaluronic acid (HA). Following the various physicochemical optimizations, the prepared HA-TCS-CS-NPs were tested for in vitro drug release kinetics, drug permeation across the stratum corneum, percentage of drug retained in the epidermis and dermis, and anti-AD efficacy. Results revealed that HA-TCS-CS-NPs exhibit sustained release profile, promising drug permeation ability, improved skin retention, and pronounced anti-AD efficacy. Conclusively, we anticipated that HA-based modification of TCS-CS-NPs could be a promising therapeutic approach for rationalized management of AD, particularly in children as well as in adults having steroid phobia.
    Matched MeSH terms: Hyaluronic Acid/chemistry
  5. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al.
    Int J Biol Macromol, 2021 Aug 31;185:350-368.
    PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119
    Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
    Matched MeSH terms: Hyaluronic Acid/chemistry
  6. Almoustafa HA, Alshawsh MA, Chik Z
    Anticancer Drugs, 2021 Aug 01;32(7):745-754.
    PMID: 33675612 DOI: 10.1097/CAD.0000000000001065
    Poly lactic-co-glycolic acid (PLGA) nanoparticles are intensively studied nanocarriers in drug delivery because of their biodegradability and biochemical characteristics. Polyethylene glycol (PEG) coating for nanocarriers gives them long circulation time in blood and makes them invisible to the reticuloendothelial system. Breast cancer cells have greater uptake of hyaluronic acid compared to normal cells as it binds to their overexpressed CD44 receptors. Since hypoxia plays an important role in cancer metastasis; we formulated PEG-PLGA nanoparticles coated with hyaluronic acid as targeted delivery system for doxorubicin (DOX) using nanoprecipitation method, and characterized them for chemical composition, size, surface charge, shape, and encapsulation efficiency. Then we tested them in vitro on hypoxia-optimized metastatic breast cancer cells. The nanoparticles were spherical with an average size of about 106 ± 53 nm, a negative surface charge (-15 ± 3 mV), and high encapsulation efficiency (73.3 ± 4.1%). In vitro investigation with hypoxia-elevated CD44 MDA-MB-231 cells showed that hyaluronic acid-targeted nanoparticles maintained their efficacy despite hypoxia-induced drug resistance unlike free DOX and nontargeted nanoparticles. In conclusion, this study revealed a simple third generation nanoparticle formulation for targeted treatment of hypoxia-induced drug resistance in breast cancer metastatic cells. Further, optimization is needed including In vivo efficacy and nanoparticle-specific pharmacokinetic studies.
    Matched MeSH terms: Hyaluronic Acid/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links