ABSTRACT: A total of 133 samples of whole wheat and barley grains and wheat and barley flour collected from retail markets in the main cities of Punjab, Pakistan, were analyzed for the mycotoxin fumonisin B1 (FB1) using reverse phase high-performance liquid chromatography with fluorescence detection. Of these samples, 120 (90%) were positive for FB1, and 75 (63%) of the 120 positive samples had FB1 concentrations higher than the European Union maximum (200 μg/kg). The limit of detection was 4 μg/kg. The highest mean (±SD) concentration of FB1 was found in whole wheat samples, 980.5 ± 211.4 μg/kg. The calculated dietary intakes of FB1 from wheat and barley flours were 4,456 and 503.7 ng/g of body weight per day, respectively.
KEY MESSAGE: We developed 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. Nonhost and partial resistance to Puccinia rust fungi in barley are polygenically inherited. These types of resistance are principally prehaustorial, show high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. Therefore, a doubled haploid (DH) mapping population (n = 122) was created by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. We identified nine genomic regions occupied by resistance quantitative trait loci (QTLs) against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Four DHs were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11-17 transformants per 100 immature embryos). The level of non-adapted rust infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust-resistance mechanisms.
The roasting of barley and malt products generates colour and flavour, controlled principally by the time course of product temperature and moisture content. Samples were taken throughout the industrial manufacture of three classes of roasted product (roasted barley, crystal malt and black malt) and analysed for moisture content, colour and flavour volatiles. Despite having distinct flavour characteristics, the three products contained many compounds in common. The product concentrations through manufacture of 15 flavour compounds are used to consider the mechanisms (Maillard reaction, caramelisation, pyrolysis) by which they were formed. The use of water sprays resulted in transient increases in formation of certain compounds (e.g., 2-cyclopentene-1,4-dione) and a decrease in others (e.g., pyrrole). The study highlights rapid changes in colour and particularly flavour which occur at the end of roasting and onwards to the cooling floor. This highlights the need for commercial maltsters to ensure consistency of procedures from batch to batch.
Hordeum vulgare L. (HV or barley) is used by traditional healers to treat various inflammatory and cardiovascular diseases, without the knowledge of pharmacologic rationale behind its actions. This study was designed to explore the potential scientific mechanism(s) that could explain the use of Hordeum vulgare in traditional medicine as a treatment for various inflammatory and cardiovascular diseases.
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.
Treatment with hypovirulent binucleate Rhizoctonia (HBNR) isolates induced systemic resistance against anthracnose infected by Colletotrichum orbiculare in cucumber, as there were no direct interaction between HBNR and C. orbiculare. This is because of the different distances between HBNR and C. orbiculare, where the root was treated with HBNR isolate and C. orbiculare was challenged and inoculated in leaves or first true leaves were treated with HBNR isolate and C. orbiculare was challenged and inoculated in second true leaves. The use of barley grain inocula and culture filtrates of HBNR significantly reduced the lesion diameter compared to the control (p = 0.05). The total lesion diameter reduction by applying barley grain inoculum of HBNR L2, W1, W7, and Rhv7 was 28%, 44%, 39%, and 40%, respectively. Similar results was also observed in treatment using culture filtrate, and the reduction of total lesion diameter by culture filtrate of HBNR L2, W1, W7, and Rhv7 was 45%, 46%, 42%, and 48%, respectively. When cucumber root was treated with culture filtrates of HBNR, the lignin was enhanced at the pathogen penetration, which is spread along the epidermis tissue of cucumber hypocotyls. Peroxidase activity in hypocotyls in the treated cucumber plant with culture filtrates of HBNR significantly increased before and after inoculation of pathogens as compared to the control. Significant enhancement was also observed in the fast-moving anodic peroxidase isozymes in the treated plants with culture filtrates of HBNR. The results showed the elicitor(s) contained in culture filtrates in HBNR. The lignin deposition as well as the peroxidase activity is an important step to prevent systemically immunised plants from pathogen infection.
An efficient callus induction and plant regeneration system has been developed using salt and heat as pre-treatment factors for three barley genotypes viz. BB-3, BB-6 and BHL-18. Different concentrations of NaCl (1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 g/L) were used and its effects were determined on the basis of the viability of callus (CV), plant regeneration (PR), relative growth rate (RGR) and tolerance index (TI). The BB-6 showed highest performance on tolerance based on CV (14.72%), PR (7.69%), RGR (0.91%) and TI (0.42%) at 6.5 g/L NaCl. Various NaCl concentrations displayed significantly differences at P
Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-β-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-β-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotianabenthamiana led to accumulation of similar amounts of (1,3;1,4)-β-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-β-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-β-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-β-glucan] allele of the QTL.
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.
Three transgenic HOSUT lines of winter wheat, HOSUT12, HOSUT20, and HOSUT24, each harbor a single copy of the cDNA for the barley sucrose transporter gene HvSUT1 (SUT), which was fused to the barley endosperm-specific Hordein B1 promoter (HO; the HOSUT transgene). Previously, flow cytometry combined with PCR analysis demonstrated that the HOSUT transgene had been integrated into different wheat chromosomes: 7A, 5D, and 4A in HOSUT12, HOSUT20, and HOSUT24, respectively. In order to confirm the chromosomal location of the HOSUT transgene by a cytological approach using wheat aneuploid stocks, we crossed corresponding nullisomic-tetrasomic lines with the three HOSUT lines, namely nullisomic 7A-tetrasomic 7B with HOSUT12, nullisomic 5D-tetrasomic 5B with HOSUT20, and nullisomic 4A-tetrasomic 4B with HOSUT24. We examined the resulting chromosomal constitutions and the presence of the HOSUT transgene in the F2 progeny by means of chromosome banding and PCR. The chromosome banding patterns of the critical chromosomes in the original HOSUT lines showed no difference from those of the corresponding wild type chromosomes. The presence or absence of the critical chromosomes completely corresponded to the presence or absence of the HOSUT transgene in the F2 plants. Investigating telocentric chromosomes occurred in the F2 progeny, which were derived from the respective critical HOSUT chromosomes, we found that the HOSUT transgene was individually integrated on the long arms of chromosomes 4A, 7A, and 5D in the three HOSUT lines. Thus, in this study we verified the chromosomal locations of the transgene, which had previously been determined by flow cytometry, and moreover revealed the chromosome-arm locations of the HOSUT transgene in the HOSUT lines.
Five improved Nigerian barley cultivars (ESCOBA, ASE – 2, ALOE, GOB – 2, SUMBARD) were obtained from Lake Chad Research Institute Maiduguri, Nigeria, and their physicochemical, malting and biochemical properties investigated employing standard procedures. Data were analyzed by means of ANOVA [at 95% significant level] and correlations using SPSS 14 software. Results showed GOB-2 grain and malt recording the highest kernel weight (47.50 g) and kernel volume (41.21 ml); whereas ALOE grain had the longest kernel length (13.40 mm) and GOB-2 the shortest (9.40 mm). GOB-2 had the largest major diameter (3.39 mm) and SUMBARD had the least (2.86 mm). ESCOBA, SUMBARD and ASE-2 cultivars had the highest protein values (as %N) of 14.90%, 13.90% and 13.69% respectively, while ALOE, ASE-2 and GOB-2 had the highest total carbohydrates of 69.97, 69.39 and 68.90% respectively. All the cultivars had good germinative capacities (> 90%), with GOB-2 and ASE-2 having the highest germinative energy values of 96.65% and 95.00%. No significant (p > 0.05) changes
in the dimension of the kernels after malting. SUMBARD recorded the highest malt yields (88.55%) followed by ASE-2 (83.45%) and ALOE (82.00%). The highest α-amylase activities of 105.34 and 96.23 unit/mg protein/min were recorded by ASE-2 and ALOE, respectively, with corresponding diastatic powers of 81.92 and 76.23oL. Thousand kernel weight correlated positively with protein (r = 0.500, P < 0.05) and with total soluble solids (r = 0.435, p < 0.05) but negatively with α-amylase (r = -0.869, p < 0.05) and with diastatic power (r = -0.838, p < 0.05). This study showed that the cultivars have good potentials for use as malting materials in beverage making.
Coeliac disease (CD) is an inflammatory disorder of the small intestine. It includes aberrant adaptive immunity with presentation of CD toxic gluten peptides by HLA-DQ2 or DQ8 molecules to gluten-sensitive T cells. A ω-gliadin/C-hordein peptide (QPFPQPEQPFPW) and a rye-derived secalin peptide (QPFPQPQQPIPQ) were proposed to be toxic in CD, as they yielded positive responses when assessed with peripheral blood T-cell clones derived from individuals with CD. We sought to assess the immunogenicity of the candidate peptides using gluten-sensitive T-cell lines obtained from CD small intestinal biopsies. We also sought to investigate the potential cross-reactivity of wheat gluten-sensitive T-cell lines with peptic-tryptic digested barley hordein (PTH) and rye secalin (PTS). Synthesised candidate peptides were deamidated with tissue transglutaminase (tTG). Gluten-sensitive T-cell lines were generated by culturing small intestinal biopsies from CD patients with peptic-tryptic gluten (PTG), PTH or PTS, along with autologous PBMCs for antigen presentation. The stimulation indices were determined by measuring the relative cellular proliferation via incorporation of (3) H-thymidine. The majority of T-cell lines reacted to the peptides studied. There was also cross-reactivity between wheat gluten-sensitive T-cell lines and the hordein, gliadin and secalin peptides. PTH, PTS, barley hordein and rye secalin-derived CD antigen-sensitive T-cell lines showed positive stimulation with PTG. ω-gliadin/C-hordein peptide and rye-derived peptide are immunogenic to gluten-sensitive T-cell lines and potentially present in wheat, rye and barley. Additional CD toxic peptides may be shared.
Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T-2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin-producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat-based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.
Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.