Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. HanafI S, Abdullah WZ, Adnan RA, Bahar R, Johan MF, Azman NF, et al.
    MyJurnal
    HbE/β-thalassemia is the most common severe form of thalassemia particularly in SEA region including Malaysia and globally, it comprised of a significant severe form of β-thalassemia disorder. It has various clinical manifestations ranging from very mild anemia to severe manifestation similar to beta thalassemia major. Many different syndromes are observed in HbE/β-thalassemia. Several genetic modifiers have been reported to play important role in contributing to phenotypic variability. The true reasons underlying this phenotypic variability remain unknown. The most reliable predictive factor of the disease phenotype is the nature of the beta globin gene mutation itself. However, the degree of severity is also believed to be affected by other genetic modifiers. For instance, high HbF level ameliorates the clinical severity of β thalassemia patients. Therefore, identification of these genetic modifiers is very important. The association of severe clinical manifestation and the specific β-globin gene mutation has been known. But the wide scope and other potential predictors have been only recently appreciated. This review therefore aimed to reveal the potential genetic modifiers of HbE/βthalassemia patients based on the previous reported studies. A better understanding on the mechanisms underlying the variety of phenotypes of this disease may lead to the direction for a better future management plans. This also promotes “personalized medicine” in patient care.
    Matched MeSH terms: Hemoglobin E*
  2. LEHMAN H, SINGH RB
    Nature, 1956 Sep 29;178(4535):695-6.
    PMID: 13369502
    Matched MeSH terms: Hemoglobin E*
  3. Azizi A, Sthaneshwar P, Shanmugam H, Arumugam S
    Pathology, 2015 Aug;47(5):495-7.
    PMID: 26126045 DOI: 10.1097/PAT.0000000000000286
    Matched MeSH terms: Hemoglobin E/genetics*
  4. COLBOURNE MJ, IKIN EW, MOURANT AE, LEHMANN H, THEIN H
    Nature, 1958 Jan 11;181(4602):119-20.
    PMID: 13493616
    Matched MeSH terms: Hemoglobin E*
  5. George E, Sivagengei K
    Med J Malaysia, 1982 Jun;37(2):102-3.
    PMID: 7132828
    Matched MeSH terms: Hemoglobin E/analysis*
  6. Sthaneshwar P, Shanmugam H, Swan VG, Nasurdin N, Tanggaiah K
    Pathology, 2013 06;45(4):417-9.
    PMID: 23635828 DOI: 10.1097/PAT.0b013e32836142eb
    AIM: Measurement of HbA1c provides an excellent measure of glycaemic control for diabetic patients. However, haemoglobin (Hb) variants are known to interfere with HbA1c analysis. In our laboratory HbA1c measurement is performed by Variant II turbo 2.0. The aim of this study is to investigate the influence of HbE trait on HbA1c analysis.

    METHODS: Haemoglobin variants were identified by HbA1c analysis in 93 of 3522 samples sent to our laboratory in a period of 1 month. Haemoglobin analysis identified HbE trait in 81 of 93 samples. To determine the influence of HbE trait on HbA1c analysis by Variant II Tubo 2.0, boronate affinity high performance liquid chromatography (HPLC) method (Primus PDQ) was used as the comparison method. Two stage linear regression analysis, Bland Altman plot and Deming regression analysis were performed to analyse whether the presence of HbE trait produced a statistically significant difference in the results. The total allowable error for HbA1c by the Royal Australasian College of Pathologists (RCPA) external quality assurance is 5%. Hence clinically significant difference is more than 5% at the medical decision level of 6% and 9%.

    RESULTS: Statistically and clinically significant higher results were observed in Variant II Turbo 2.0 due to the presence of HbE trait. A positive bias of ∼10% was observed at the medical decision levels.

    CONCLUSION: Laboratories should be cautious when evaluating HbA1c results in the presence of haemoglobin variants.

    Matched MeSH terms: Hemoglobin E/genetics*
  7. Hafiza A, Malisa MY, Khirotdin RD, Azlin I, Azma Z, Thong MC, et al.
    Malays J Pathol, 2012 Dec;34(2):161-4.
    PMID: 23424780
    The capillary electrophoresis (CE) is a new system that utilizes the principle of electrokinetic separation of molecules in eight electrolyte buffer-filled silica capillaries. In this study, we established the normal ranges of haemoglobin A2 (HbA2) and haemoglobin F (HbF) levels for normal individuals using this system and also the HbA2 level in beta thalassaemia and haemoglobin E (HbE) individuals.
    Matched MeSH terms: Hemoglobin E/analysis*; Hemoglobin E/genetics
  8. Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM
    Antioxid Redox Signal, 2017 05 10;26(14):794-813.
    PMID: 27650096 DOI: 10.1089/ars.2016.6806
    SIGNIFICANCE: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected.

    CRITICAL ISSUES: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events.

    FUTURE DIRECTIONS: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

    Matched MeSH terms: Hemoglobin E/genetics; Hemoglobin E/metabolism*
  9. Alauddin H, Langa M, Mohd Yusoff M, Raja Sabudin RZA, Ithnin A, Abdul Razak NF, et al.
    Malays J Pathol, 2017 Apr;39(1):17-23.
    PMID: 28413201 MyJurnal
    INTRODUCTION: Haemoglobin Bart's (Hb Bart's) level is associated with α-thalassaemia traits in neonates, enabling early diagnosis of α-thalassaemia. The study aimed to detect and quantify the Hb Bart's using Cord Blood (CB) and CE Neonat Fast Hb (NF) progammes on fresh and dried blood spot (DBS) specimen respectively by capillary electrophoresis (CE).

    METHODS: Capillarys Hemoglobin (E) Kit (for CB) and Capillarys Neonat Hb Kit (for NF) were used to detect and quantify Hb Bart's by CE in fresh cord blood and dried blood spot (DBS) specimens respectively. High performance liquid chromatography (HPLC) using the β-Thal Short Programme was also performed concurrently with CE analysis. Confirmation was obtained by multiplex ARMS Gap PCR.

    RESULTS: This study was performed on 600 neonates. 32/600 (5.3%) samples showed presence of Hb Bart's peak using the NF programme while 33/600 (5.5%) were positive with CB programme and HPLC methods. The range of Hb Bart's using NF programme and CB programme were (0.5-4.1%) and (0.5-7.1%), respectively. Molecular analysis confirmed all positive samples possessed α-thalassaemia genetic mutations, with 23/33 cases being αα/--SEA, four -α3.7/-α3.7, two αα/-α3.7 and three αα/ααCS. Fifty Hb Bart's negative samples were randomly tested for α-genotypes, three were also found to be positive for α-globin gene mutations. Thus, resulting in sensitivity of 91.7% and 88.9% and specificity of 100% for the Capillarys Cord Blood programme and Capillarys Neonat Fast programme respectively.

    CONCLUSION: Both CE programmes using fresh or dried cord blood were useful as a screening tool for α-thalassaemia in newborns. All methods show the same specificity (100%) with variable, but acceptable sensitivities in the detection of Hb Bart.
    Matched MeSH terms: Hemoglobin E/analysis; Hemoglobin E/biosynthesis
  10. Nadarajan VS, Sthaneshwar P, Jayaranee S
    Int J Lab Hematol, 2010 Apr;32(2):215-21.
    PMID: 19566741 DOI: 10.1111/j.1751-553X.2009.01174.x
    Individuals with alpha-thalassaemia (ATT), beta-thalassaemia (BTT) and HbE trait (HET) are often initially identified based on haematological parameters. However, the values of these parameters usually overlap with iron deficiency anaemia (IDA) and anaemia of chronic disease (ACD). We evaluated the use of RBC-Y in 156 normal individuals and 332 patients; ATT (n = 37), BTT (n = 61), HET (n = 25), HbH disease (n = 5), ACD (n = 67), IDA (n = 83) and ACD with IDA (n = 54). Diagnostic efficiency was analysed by receiver operating characteristics (ROC). MCH was better compared with RBC-Y in discriminating normal from abnormal with sensitivity and specificity of 94% at a cut-off of 26 pg. The Green and King (G&K) index performed the best in discriminating carriers from IDA and ACD with area under the ROC curve (AUC(ROC)) of 0.81. However, if ACD was excluded, RBC-Y/MCV was a good discriminator for carriers from IDA with AUC(ROC) = 0.845. In general screening of populations with ATT, BTT and HET, we propose that hypochromic individuals be first identified by MCH <26 pg and carriers distinguished within these hypochromic individuals from IDA by using RBC-Y/MCV. However, if the prevalence of ACD were high within the screening population, G&K index would be a more suitable discriminator.
    Matched MeSH terms: Hemoglobin E/genetics*
  11. Musalmah M, Normah J, Wan Mohamad WB, Salwah ON, Fatah HA, Nik Zahari NA
    Med J Malaysia, 2000 Sep;55(3):352-6.
    PMID: 11200716
    The effect of HbE, a hemoglobin variant, on the determination of HbA1/HbA1c using 4 commercial kits based on cation-exchange resin, cation-exchange column chromatography and specific antibody techniques was studied. Fifty-eight normal and 63 HbE heterozygous subjects were tested for HbA1 and HbA1c using 4 commercial kits i.e. Eagles Diagnostics, Boehringer Mannehim (BM), Diastat and Ames DCA 2000. Analyses of the samples by the 4 kits were done within one week and samples were stored at 4 degrees C before analysis. The results showed that HbE affects the determination of glycosylated hemoglobin using cation-exchange based and not kits based on specific antibody techniques.
    Matched MeSH terms: Hemoglobin E/analysis*
  12. George E, Khuziah R
    Trop Geogr Med, 1984 Jun;36(2):123-5.
    PMID: 6332395
    Hereditary haemolytic anaemias have been found to be a significant cause of haemolytic disease in West Malaysia. This paper reports a micromapping study of 916 healthy Malay males from June to August 1983 to determine the distribution of the relevant thalassaemia genes in West Malaysia. Beta thalassaemia trait was found in 2.18%, HbE 3.49% and alpha thal2 (alpha+) trait in 26%. Of the sixteen transfusion dependant Malay thalassaemic patients at the Paediatric Unit, National University of Malaysia, eight patients had HbE beta thalassaemia and the rest are beta thalassaemia major; these patients who are transfusion dependant receive inadequate treatment. Prevention is the only resort.
    Matched MeSH terms: Hemoglobin E/genetics
  13. George E, Kudva MV
    Med J Malaysia, 1989 Sep;44(3):255-8.
    PMID: 2626141
    Hereditary stomatocytic ovalocytosis and haemoglobin E are two genes present in 3-5% of Malays. This is a report of a 22 year old Malay college student with homozygous haemoglobin E and hereditary stomatocytic ovalocytosis where the clinical effects seen were the result of the summation of these genes: he was asymptomatic, presenting with moderate jaundice, moderate hepatosplenomegaly, and a mild haemolytic anaemia.
    Matched MeSH terms: Hemoglobin E/genetics*
  14. Fix AG
    Am J Hum Biol, 2004 Jul-Aug;16(4):387-94.
    PMID: 15214057
    Migration among local populations classically has been seen as the principal process retarding genetic microdifferentiation. However, as Sewall Wright pointed out long ago, migration may also act as a random differentiating force. In fact, when migrants comprise a biological kin group, migration may be considered a component of genetic drift. The causes of kin-structured migration (KSM) lie in the common, if not universal, tendency for kin to associate and cooperate. However, similar to genetic drift, KSM has its greatest effect in smaller populations and is most apparent in low-density fission-fusion societies such as the Yanomamo of South America and the Semai of Malaysia, and less salient in higher density, low-mobility populations such as those of the New Guinea Highlands. The evolutionary consequences of KSM begin with increased genetic variation among populations. Such intergroup variation provides a basis for group selection. The origin of larger-scale geographic differentiation can arise from kin-structured migrant groups colonizing new regions. Waves of colonizing kin-structured founder groups may produce gene frequency clines, mimicking demic diffusion and natural selection. Finally, because kin structuring reduces the effective size of a population, it may be speculated that the extremely small effective size inferred for ancestral populations of Homo sapiens may be an artifact of kin-structured demographically larger populations.
    Matched MeSH terms: Hemoglobin E/genetics
  15. Yang KG, Kutlar F, George E, Wilson JB, Kutlar A, Stoming TA, et al.
    Br J Haematol, 1989 May;72(1):73-80.
    PMID: 2736244
    This study concerned the identification of the beta-thalassaemia mutations that were present in 27 Malay patients with Hb E-beta-thalassaemia and seven Malay patients with thalassaemia major who were from West Malaysia. Nearly 50% of all beta-thalassaemia chromosomes carried the G----C substitution at nucleotide 5 of IVS-I; the commonly occurring Chinese anomalies such as the frameshift at codons 41 and 42, the nonsense mutation A----T at codon 17, the A----G substitution at position -28 of the promoter region, and the C----T substitution at position 654 of the second intron, were rare or absent. Two new thalassaemia mutations were discovered. The first involves a frameshift at codon 35 (-C) that was found in two patients with Hb E-beta zero-thalassaemia and causes a beta zero-thalassaemia because a stop codon is present at codon 60. The second is an AAC----AGC mutation in codon 19 that was present on six chromosomes. This substitution results in the production of an abnormal beta chain (beta-Malay) that has an Asn----Ser substitution at position beta 19. Hb Malay is a 'Hb Knossos-like' beta +-thalassaemia abnormality; the A----G mutation at codon 19 likely creates an alternate splicing site between codons 17 and 18, reducing the efficiency of the normal donor splice site at IVS-I to about 60%.
    Matched MeSH terms: Hemoglobin E/genetics*
  16. George-Kodiseri E, Yang KG, Kutlar F, Wilson JB, Kutlar A, Stoming TA, et al.
    Singapore Med J, 1990 Aug;31(4):374-7.
    PMID: 2255937
    The overseas Chinese in West Malaysia are almost exclusively from the south-eastern provinces of China-Kwangtung, Fukien, and Kwangsi. To institute a comprehensive thalassaemia control programme for this region we have characterised the beta thalassaemia mutations in 16 Chinese patients from West Malaysia: 4 beta thalassaemia mutations were seen: a) an A----G substitution in the TATA box [-28 base pairs (bp)], an A----T substitution in codon 17 [17 A----T], c) a 4 base pairs - TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)], and d) a C----T substitution at the second intervening sequence (IVS 11) position 654. Similar mutations have been described in patients from the south-eastern provinces of China. The delineation of the specific mutations present will enable effective prenatal diagnosis for beta thalassaemia of ethnic Chinese in West Malaysia to be instituted.
    Matched MeSH terms: Hemoglobin E/genetics
  17. George E, Faridah K, Sivagengei K
    Singapore Med J, 1988 Feb;29(1):45-7.
    PMID: 3406766
    83 Malays with HbE beta-thalassaemia who were not transfusion dependent were investigated. 79 persons showed no beta0 formation indicating the predominant gene in Malays with HbE beta-thalassaemia was beta0. HbF assays showed levels that were similar to transfusion dependent patients. Further studies are necessary to determine the presence of the alpha, (alpha+) gene Interacting with HbE and beta0 to produce the milder phenotype of HbE beta-thalassaemla.
    Matched MeSH terms: Hemoglobin E/metabolism*
  18. Abdullah WA, Jamaluddin NB, Kham SK, Tan JA
    PMID: 9031421
    The spectrum of beta-thalassemia mutations in Malays in Singapore and Kelantan (Northeast Malaysia) was studied. Allele specific priming was used to determine the mutations in beta-carriers at -28, Codon 17, IVSI #1, IVSI #5, Codon 41-42 and IVSII #654 along the beta-globin gene. The most common structural hemoglobin variant in Southeast Asia, Hb E, was detected by DNA amplification with restriction enzyme (Mnl1) analysis. Direct genomic sequencing was carried out to detect the beta-mutations uncharacterized by allele-specific priming. The most prevalent beta-mutations in Singaporean Malays were IVSI #5 (45.83%) followed by Hb E (20.83%), codon 15 (12.5%) and IVSI #1 and IVSII #654 at 4.17% each. In contrast, the distribution of the beta-mutations in Kelantan Malays differed, with Hb E as the most common mutation (39.29%) followed by IVSI #5 (17.86%), codon 41-42 (14.29%), codon 19 (10.71%) and codon 17 (3.57%). The beta-mutations in Kelantan Malays follow closely the distribution of beta-mutations in Thais and Malays of Southern Thailand and Malays of West Malaysia. The AAC-->AGC base substitution in codon 19 has been detected only in these populations. The spectrum of beta-mutations in the Singaporean Malays is more similar to those reported in Indonesia with the beta-mutation at codon 15 (TGG-->TAG) present in both populations. The characterization of beta-mutations in Singaporean and Kelantan Malays will facilitate the establishment of effective prenatal diagnosis programs for beta-thalassemia major in this ethnic group.
    Matched MeSH terms: Hemoglobin E/genetics
  19. Ganesan J, George R, Lie-Injo LE
    PMID: 1025742
    A survey of abnormal haemoglobins and hereditary ovalocytosis was carried out among 629 Malays of Minangkabau descent in the Ulu Jempul District of Kuala Pilah, in the state of Negri Sembilan in West Malaysia.. Several abnormal haemoglobins were found with the following frequencies: Hb E 5.25%, Hb CoSp 2.38%, Hb A2 indonesia 0.80%, a fast moving Hb with a Mobility between A and Bart's 0.64% and Hb Q 0.16%. Hereditary ovalocytosis was found in 13.2% of these people. None of the persons with hereditary ovalocytosis had any evidence of haemolysis.
    Matched MeSH terms: Hemoglobin E/analysis
  20. Fix AG
    Am J Phys Anthropol, 1984 Oct;65(2):201-12.
    PMID: 6507610
    A Monte Carlo simulation based on the population structure of a small-scale human population, the Semai Senoi of Malaysia, has been developed to study the combined effects of group, kin, and individual selection. The population structure resembles D.S. Wilson's structured deme model in that local breeding populations (Semai settlements) are subdivided into trait groups (hamlets) that may be kin-structured and are not themselves demes. Additionally, settlement breeding populations are connected by two-dimensional stepping-stone migration approaching 30% per generation. Group and kin-structured group selection occur among hamlets the survivors of which then disperse to breed within the settlement population. Genetic drift is modeled by the process of hamlet formation; individual selection as a deterministic process, and stepping-stone migration as either random or kin-structured migrant groups. The mechanism for group selection is epidemics of infectious disease that can wipe out small hamlets particularly if most adults become sick and social life collapses. Genetic resistance to a disease is an individual attribute; however, hamlet groups with several resistant adults are less likely to disintegrate and experience high social mortality. A specific human gene, hemoglobin E, which confers resistance to malaria, is studied as an example of the process. The results of the simulations show that high genetic variance among hamlet groups may be generated by moderate degrees of kin-structuring. This strong microdifferentiation provides the potential for group selection. The effect of group selection in this case is rapid increase in gene frequencies among the total set of populations. In fact, group selection in concert with individual selection produced a faster rate of gene frequency increase among a set of 25 populations than the rate within a single unstructured population subject to deterministic individual selection. Such rapid evolution with plausible rates of extinction, individual selection, and migration and a population structure realistic in its general form, has implications for specific human polymorphisms such as hemoglobin variants and for the more general problem of the tempo of evolution as well.
    Matched MeSH terms: Hemoglobin E/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links