Displaying all 6 publications

Abstract:
Sort:
  1. Waiho K, Fazhan H, Zhang Y, Afiqah-Aleng N, Moh JHZ, Ikhwanuddin M, et al.
    Genomics, 2020 09;112(5):2959-2969.
    PMID: 32437851 DOI: 10.1016/j.ygeno.2020.05.007
    Infection by the rhizocephalan parasite Sacculina beauforti can have detrimental effects on mud crab Scylla olivacea. However, the molecular changes that occur during rhizocephalan infection are poorly understood. Due to the disruption in the reproductive system after infection, the gonadal transcriptomic profiles of non-infected and infected Scylla olivacea were compared. A total of 686 and 843 unigenes were differentially expressed between non-infected and infected males, and females, respectively. The number of DEGs increased after infection. By comparing shared DEGs of non-infected and infected individuals, potential immune- and reproduction-related of host, and immune- and metabolism-related genes of parasite are highlighted. The only shared KEGG pathway between non-infected and infected individuals was the ribosome pathway. In summary, findings in this study provide new insights into the host-parasite relationship of rhizocephalan parasites and their crustacean hosts.
    Matched MeSH terms: Gonads/metabolism
  2. Ismail MF, Siraj SS, Daud SK, Harmin SA
    Gen Comp Endocrinol, 2011 Jan 1;170(1):125-30.
    PMID: 20888822 DOI: 10.1016/j.ygcen.2010.09.021
    Annual gonad hormonal profile of wild, matured mahseer (29 males and 23 female) averaging in weight between 0.95±0.26 and 1.19±0.23 kg for males and females, respectively, were investigated from November 2007 to November 2008 using enzyme-linked immunosorbent assay (ELISA) technique. Blood was collected from caudal vein, monthly and plasma separation by centrifugation was done to measure reproductive hormones: 17β-estradiol (E(2)), testosterone (T), and 11-keto-testosterone (11KT). Gonads were sampled for histology processing to observe their maturity. Highest T level in females and males was recorded at 0.22±0.016 and 0.88±0.014 ng/ml, respectively. The 11KT showed several peaks and the highest value was noted at 0.7±0.018 ng/ml in November 2008. The female E(2) initially was at 1.48±0.16 ng/ml and significantly increased (P<0.05) to 1.53±0.39 ng/ml in November 2008. Ovaries were laden with oocytes in several stages in all the samples while testes gonad showed a high level of spermatids throughout the year. Changes in plasma level of the gonadal hormones were correlated with the ovarian and testes maturities. In conclusion, the study suggests that mahseer can be categorized as asynchronized and multiple spawner. The information gathered is important for appropriate breeding and conservation programs of the Malaysian mahseer.
    Matched MeSH terms: Gonads/metabolism*
  3. Ubuka T, Son YL, Tsutsui K
    Gen Comp Endocrinol, 2016 Feb 1;227:27-50.
    PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009
    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
    Matched MeSH terms: Gonads/metabolism
  4. Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH
    Biomed Res Int, 2016;2016:9732780.
    PMID: 27556045 DOI: 10.1155/2016/9732780
    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
    Matched MeSH terms: Gonads/metabolism
  5. Khor YM, Soga T, Parhar IS
    Gen Comp Endocrinol, 2016 Feb 1;227:84-93.
    PMID: 26686318 DOI: 10.1016/j.ygcen.2015.12.004
    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.
    Matched MeSH terms: Gonads/metabolism
  6. Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I
    Endocrinology, 2007 Dec;148(12):5822-30.
    PMID: 17823257
    The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
    Matched MeSH terms: Gonads/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links