β-thalassaemia is a genetic disorder resulting in a reduction or absence of β-globin gene expression. Due to the high prevalence of β-thalassaemia and the lack of available treatment other than blood transfusion and haematopoietic stem cell (HSC) transplantation, the disease represents a considerable burden to clinical and economic systems. Foetal haemoglobin has an appreciated ameliorating effect in β-haemoglobinopathy, as the γ-globin chain substitutes the β-globin chain reduction by pairing with the excess α-globin chain in β-thalassaemia and reduces sickling in sickle cell disease (SCD). BCL11A is a critical regulator and repressor of foetal haemoglobin. Downregulation of BCL11A in adult erythroblasts and cell lines expressing adult haemoglobin led to a significant increase in foetal haemoglobin levels. Disruption of BCL11A erythroid enhancer resulted in disruption of the BCL11A gene solely in the erythroid lineages and increased γ-globin expression in adult erythroid cells. Autologous haematopoietic stem cell gene therapy represents an attractive treatment option to overcome the immune complications and donor availability associated with allogeneic transplantation. Using genome editing technologies, the disruption of BCL11A to induce γ- globin expression in HSCs has emerged as an alternative approach to treat β-thalassaemia. Targeting the +58 BCL11A erythroid enhancer or BCL11A binding motif at the γ-gene promoter with CRISPR-Cas9 or base editors has successfully disrupted the gene and the binding motif with a subsequent increment in HbF levels. This review outlines the critical role of BCL11A in γ-globin gene silencing and discusses the different genome editing approaches to downregulate BCL11A as a means for ameliorating β-thalassaemia.
This is the first report of QQQ-mass spectrometric identification and quantification of the Hb subunits, alpha, beta, delta and gamma globin peptides, derived from enzymatic-digestion of proteins in the early unknown peaks of the Bio-Rad cation-exchange chromatography of haemoglobin. The objectives were to assess the relationship of the quantity of the free alpha, beta, delta and gamma globin chains with the phenotypic diversity of beta-thalassaemias (β-thal). The results demonstrate that the pools of free globin chains in red blood cells were correlating with the severity of the disease in patients with different phenotypes of β-thal. The mechanism and the regulation of synthesis of free globin chains pool in a normal individual and in patients with different β-thal phenotypes could arise from several mechanisms which will require further investigation. The role of the free globin pool in patients with β-thal for development of novel therapeutic approaches based on these potential targets requires further investigation. Pertinent biomarkers improves the diagnosis of the β-thal, especially in low-income countries where they are most common and allows more effective therapeutic intervention leading to more successful therapeutic outcome.
This is the first report of quadrupole time-of-flight (Q-TOF) mass spectrometric identification of the hemoglobin (Hb) subunits, α, β, δ and γ peptides, derived from enzymatic-digestion of proteins in the early unknown peaks of the cation exchange chromatography of Hb. The objectives were to identify the unknown high performance liquid chromatography (HPLC) peaks in healthy subjects and in patients with β-thalassemia (β-thal). The results demonstrate the existence of pools of free globin chains in red blood cells (RBCs). The α-, β-, δ- and γ-globin peptides were identified in the unknown HPLC peaks. The quantification and role of the free globin pool in patients with β-thal requires further investigation. Identification of all types of Hb subunits in the retention time (RT) before 1 min. suggests that altered Hbs is the nature of these fast-eluting peaks. Relevancy of thalassemias to the protein-aggregation disorders will require review of the role of free globin in the pathology of the disease.
Progress in the functional studies of human olfactory receptors has been largely hampered by the lack of a reliable experimental model system. Although transgenic approaches in mice could characterize the function of individual olfactory receptors, the presence of over 300 functional genes in the human genome becomes a daunting task. Thus, the characterization of individuals with a genetic susceptibility to altered olfaction coupled with the absence of particular olfactory receptor genes will allow phenotype/genotype correlations and vindicate the function of specific olfactory receptors with their cognate ligands. We characterized a 118 kb β-globin deletion and found that its 3' end breakpoint extends to the neighboring olfactory receptor region downstream of the β-globin gene cluster. This deletion encompasses six contiguous olfactory receptor genes (OR51V1, OR52Z1, OR51A1P, OR52A1, OR52A5, and OR52A4) all of which are expressed in the brain. Topology analysis of the encoded proteins from these olfactory receptor genes revealed that OR52Z1, OR52A1, OR52A5, and OR52A4 are predicted to be functional receptors as they display integral characteristics of G-proteins coupled receptors. Individuals homozygous for the 118 kb β-globin deletion are afflicted with β-thalassemia due to a homozygous deletion of the β-globin gene and have no alleles for the above mentioned olfactory receptors genes. This is the first example of a homozygous deletion of olfactory receptor genes in human. Although altered olfaction remains to be ascertained in these individuals, such a study can be carried out in β-thalassemia patients from Malaysia, Indonesia and the Philippines where this mutation is common. Furthermore, OR52A1 contains a γ-globin enhancer, which was previously shown to confer continuous expression of the fetal γ-globin genes. Thus, the hypothesis that β-thalassemia individuals, who are homozygous for the 118 kb deletion, may also have an exacerbation of their anemia due to the deletion of two copies of the γ-globin enhancer element is worthy of consideration.
The alpha haemoglobin stabilising protein (AHSP) acts as a molecular chaperone for α-globin by stabilising nascent α-globin before transferring it to waiting free β-globin chains. Binding of AHSP to α-globin renders α-globin chemically inert whereby preventing it from precipitating and forming reactive oxygen species byproducts. The AHSP has been actively studied in the recent years, particularly in its relation to β-thalassaemia. Studies have shown that AHSP is a modifier in β-thalassaemia mice models. However, this relationship is less established in humans. Studies by some groups showed no correlation between the AHSP haplotypes and the severity of β-thalassaemia, whereas others have shown that certain AHSP haplotype could modify the phenotype of β-thalassaemia intermedia patients. We investigated the expression of AHSP in relation to selected demographic data, full blood count, HPLC results, HbE/β-thalassaemia genotype, Xmn-1 Gγ polymorphism, α-globin, β-globin and γ-globin expression. We found that AHSP expression was significantly correlated to mean cell haemoglobin level, HbF %, α-globin, β-globin and excess α-globin expression. We concluded that AHSP could be a secondary compensatory mechanism in red blood cells to counterbalance the excess α-globin chains in HbE/β-thalassaemia individuals.