Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  2. Etti IC, Rasedee A, Hashim NM, Abdul AB, Kadir A, Yeap SK, et al.
    Drug Des Devel Ther, 2017;11:865-879.
    PMID: 28356713 DOI: 10.2147/DDDT.S124324
    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  3. Omer FAA, Hashim NBM, Ibrahim MY, Dehghan F, Yahayu M, Karimian H, et al.
    Tumour Biol., 2017 Nov;39(11):1010428317731451.
    PMID: 29110583 DOI: 10.1177/1010428317731451
    Xanthones are phytochemical compounds found in a number of fruits and vegetables. Characteristically, they are noted to be made of diverse properties based on their biological, biochemical, and pharmacological actions. Accordingly, the apoptosis mechanisms induced by beta-mangostin, a xanthone compound isolated from Cratoxylum arborescens in the human promyelocytic leukemia cell line (HL60) in vitro, were examined in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was done to estimate the cytotoxicity effect of β-mangostin on the HL60 cell line. Acridine orange/propidium iodide and Hoechst 33342 dyes and Annexin V tests were conducted to detect the apoptosis features. Caspase-3 and caspase-9 activities; reactive oxygen species; real-time polymerase chain reaction for Bcl-2, Bax, caspase-3, and caspase-9 Hsp70 genes; and western blot for p53, cytochrome c, and pro- and cleavage-caspase-3 and caspase-9 were assessed to examine the apoptosis mechanism. Cell-cycle analysis conducted revealed that β-mangostin inhibited the growth of HL60 at 58 µM in 24 h. The administration of β-mangostin with HL60 caused cell morphological changes related to apoptosis which increased the number of early and late apoptotic cells. The β-mangostin-catalyzed apoptosis action through caspase-3, caspase-7, and caspase-9 activation overproduced reactive oxygen species which downregulated the expression of antiapoptotic genes Bcl-2 and HSP70. Conversely, the expression of the apoptotic genes Bax, caspase-3, and caspase-9 were upregulated. Meanwhile, at the protein level, β-mangostin activated the formation of cleaved caspase-3 and caspase-9 and also upregulated the p53. β-mangostin arrested the cell cycle at the G0/G1 phase. Overall, the results for β-mangostin showed an antiproliferative effect in HL60 via stopping the cell cycle at the G0/G1 phase and prompted the intrinsic apoptosis pathway.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  4. Tan CH, Yeap JS, Lim SH, Low YY, Sim KS, Kam TS
    J Nat Prod, 2021 05 28;84(5):1524-1533.
    PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013
    A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints
  5. Tan BL, Norhaizan ME, Chan LC
    Pharmaceutics, 2018 Oct 23;10(4).
    PMID: 30360519 DOI: 10.3390/pharmaceutics10040198
    Magnetic iron oxide nanoparticles are among the most useful metal nanoparticles in biomedical applications. A previous study had confirmed that phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) exhibited antiproliferative activity towards human colorectal cancer (HT-29) cells. Hence, in this work, we explored the in vitro cytotoxicity activity and mechanistic action of Phy-CS-MNP nanocomposite in modulating gene and protein expression profiles in HT-29 cell lines. Cell cycle arrest and apoptosis were evaluated by NovoCyte Flow Cytometer. The mRNA changes (cyclin-dependent kinase 4 (Cdk4), vascular endothelial growth factor A (VEGFA), c-Jun N-terminal kinase 1 (JNK1), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9)) and protein expression (nuclear factor-kappa B (NF-κB) and cytochrome c) were assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The data from our study demonstrated that treatment with Phy-CS-MNP nanocomposite triggered apoptosis and G₀/G₁ cell cycle arrest. The transcriptional activity of JNK1 and iNOS was upregulated after treatment with 90 μg/mL Phy-CS-MNP nanocomposite. Our results suggested that Phy-CS-MNP nanocomposite induced apoptosis and cell cycle arrest via an intrinsic mitochondrial pathway through modulation of Bax and Bcl-2 and the release of cytochrome c from the mitochondria into the cytosol.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints
  6. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints
  7. Hajrezaie M, Paydar M, Looi CY, Moghadamtousi SZ, Hassandarvish P, Salga MS, et al.
    Sci Rep, 2015 Mar 13;5:9097.
    PMID: 25764970 DOI: 10.1038/srep09097
    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  8. Karimian H, Moghadamtousi SZ, Fadaeinasab M, Golbabapour S, Razavi M, Hajrezaie M, et al.
    Drug Des Devel Ther, 2014;8:1481-97.
    PMID: 25278746 DOI: 10.2147/DDDT.S68818
    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  9. Yap WH, Khoo KS, Lim SH, Yeo CC, Lim YM
    Phytomedicine, 2012 Jan 15;19(2):183-91.
    PMID: 21893403 DOI: 10.1016/j.phymed.2011.08.058
    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints*
  10. Andas AR, Abdul AB, Rahman HS, Sukari MA, Abdelwahab SI, Samad NA, et al.
    Asian Pac J Cancer Prev, 2015;16(10):4311-6.
    PMID: 26028091
    Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an IC50 value of 12.0 μg/mL, without affecting human normal liver cells, WRL-68 (IC50>50 μg/mL) causing G0/G1 cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of NF-κB that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  11. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, et al.
    J Ethnopharmacol, 2015 May 26;166:270-8.
    PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039
    Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  12. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  13. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  14. Lay MM, Karsani SA, Malek SN
    Int J Mol Sci, 2014 Jan 02;15(1):468-83.
    PMID: 24451128 DOI: 10.3390/ijms15010468
    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  15. Surien O, Ghazali AR, Masre SF
    Sci Rep, 2021 Jul 21;11(1):14862.
    PMID: 34290382 DOI: 10.1038/s41598-021-94508-7
    Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p cell cycle arrest.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*; G1 Phase Cell Cycle Checkpoints/genetics*
  16. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints
  17. Zorofchian Moghadamtousi S, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Abdul Kadir H
    J Ethnopharmacol, 2014 Oct 28;156:277-89.
    PMID: 25195082 DOI: 10.1016/j.jep.2014.08.011
    ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata known as "the cancer killer" has been widely used in the traditional medicine for the treatment of cancer and tumors. The purpose of this study is to investigate the anticancer properties of ethyl acetate extract of Annona muricata leaves (EEAM) on HT-29 and HCT-116 colon cancer cells and the underlying mechanisms.
    MATERIALS AND METHODS: The effect of EEAM on the cell proliferation of HT-29 and HCT-116 cells was analyzed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay. High content screening system (HCS) was applied to investigate the cell membrane permeability, mitochondrial membrane potential (MMP), nuclear condensation and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. Flow cytometric analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. The protein expression of Bax and Bcl-2 was determined using immunofluorescence analysis. In addition, the potential of EEAM to suppress the migration and invasion of colon cancer cells was also examined.
    RESULTS: EEAM exerted significant cytotoxic effects on HCT-116 and HT-29 cells as determined by MTT and LDH assays. After 24 h treatment, EEAM exhibited the IC₅₀ value of 11.43 ± 1.87 µg/ml and 8.98 ± 1.24 µg/ml against HT-29 and HCT-116 cells, respectively. Flow cytometric analysis demonstrated the cell cycle arrest at G1 phase and phosphatidylserine externalization confirming the induction of apoptosis. EEAM treatment caused excessive accumulation of ROS followed by disruption of MMP, cytochrome c leakage and activation of the initiator and executioner caspases in both colon cancer cells. Immunofluorescence analysis depicted the up-regulation of Bax and down-regulation of Bcl-2 proteins while treated with EEAM. Furthermore, EEAM conspicuously blocked the migration and invasion of HT-29 and HCT-116 cells.
    CONCLUSIONS: These findings provide a scientific basis for the use of A. muricata leaves in the treatment of cancer, although further in vivo studies are still required.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  18. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  19. Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, Hajrezaei M, Razavi M, Safi SZ, et al.
    PLoS One, 2015;10(5):e0127434.
    PMID: 25996383 DOI: 10.1371/journal.pone.0127434
    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  20. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links