Displaying all 17 publications

Abstract:
Sort:
  1. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23983317
    Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical activity, scientists are studying the effects of increasing individuals' antioxidant levels through diet and dietary supplements. Honey appears to act as an antioxidant in more ways than one. In the body, honey can mop up free radicals and contribute to better health. Various antioxidant activity methods have been used to measure and compare the antioxidant activity of honey. In recent years, DPPH (Diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), ORAC (The Oxygen Radical Absorbance Capacity), ABTS [2, 2-azinobis (3ehtylbenzothiazoline-6-sulfonic acid) diamonium salt], TEAC [6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox)-equivalent antioxidant capacity] assays have been used to evaluate antioxidant activity of honey. The antioxidant activity of honey is also measured by ascorbic acid content and different enzyme assays like Catalase (CAT), Glutathione Peroxidase (GPO), Superoxide Dismutase (SOD). Among the different methods available, methods that have been validated, standardized and widely reported are recommended.
    Matched MeSH terms: Free Radicals/metabolism
  2. Jamil S, Sirat HM, Jantan I, Aimi N, Kitajima M
    J Nat Med, 2008 Jul;62(3):321-4.
    PMID: 18404311 DOI: 10.1007/s11418-008-0226-3
    A new prenylated dihydrochalcone, 2',4'-dihydroxy-4-methoxy-3'-prenyldihydrochalcone (1), along with two known compounds, 2',4',4-trihydroxy-3'-prenylchalcone (2) and 2',4-dihydroxy-3',4'-(2,2-dimethylchromene)chalcone (3) were isolated from the leaves of Artocarpus lowii. The structures of 1-3 were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compounds 1-3 showed strong free radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) measured by electron spin resonance (ESR) spectrometry.
    Matched MeSH terms: Free Radicals/metabolism
  3. Newaz MA, Nawal NN, Rohaizan CH, Muslim N, Gapor A
    Am J Hypertens, 1999 Aug;12(8 Pt 1):839-44.
    PMID: 10480480
    Antioxidant protection provided by different doses of alpha-tocopherol was compared by determining nitric oxide synthase (NOS) activity in blood vessels of spontaneously hypertensive rats (SHR) treated with alpha-tocopherol. SHR were divided into four groups namely hypertensive control (C), treatment with 17 mg of alpha-tocopherol/kg diet (alpha1), 34 mg of alpha-tocopherol/kg diet (alpha2), and 170 mg of alpha-tocopherol/kg diet (alpha3). Wister Kyoto (WKY) rats were used as normal control (N). Blood pressure were recorded from the tail by physiography every other night for the duration of the study period of 3 months. At the end of the trial, animals were sacrificed. The NOS activity in blood vessels was measured by [3H]arginine radioactive assay and the nitrite concentration in plasma by spectrophotometry at wavelength 554 nm using Greiss reagent. Analysis of data was done using Student's t test and Pearson's correlation. The computer program Statistica was used for all analysis. Results of our study showed that for all the three alpha-tocopherol-treated groups, blood pressure was significantly (P < .001) reduced compared to the hypertensive control and maximum reduction of blood pressure was shown by the dosage of 34 mg of alpha-tocopherol/kg diet (C: 209.56 +/- 8.47 mm Hg; alpha2: 128.83 +/- 17.13 mm Hg). Also, NOS activity in blood vessels of SHR was significantly lower than WKY rats (N: 1.54 +/- 0.26 pmol/mg protein, C: 0.87 +/- 0.23 pmol/mg protein; P < .001). Although alpha-tocopherol in doses of alpha1, alpha2, and alpha3 increased the NOS activity in blood vessels, after treatment only that of alpha2 showed a statistical significance (P < .01). Plasma nitrite concentration was significantly reduced in SHR compared to normal WKY rats (N: 54.62 +/- 2.96 mol/mL, C: 26.24 +/- 2.14 mol/mL; P < .001) and accordingly all three groups showed significant improvement in their respective nitrite level (P < .001). For all groups, NOS activity and nitrite level showed negative correlation with blood pressure. It was significant for NOS activity in hypertensive control (r = -0.735, P = .038), alpha1 (r = -0.833, P = .001), and alpha2 (r = -0.899, P = .000) groups. For plasma nitrite, significant correlation was observed only in group alpha1 (r = -0.673, P = .016) and alpha2 (r = -0.643, P = .024). Only the alpha2 group showed significant positive correlation (r = 0.777, P = .003) between NOS activity and nitrite level. In conclusion it was found that compared to WKY rats, SHR have lower NOS activity in blood vessels, which upon treatment with antioxidant alpha-tocopherol increased the NOS activity and concomitantly reduced the blood pressure. There was correlation of lipid peroxide in blood vessels with NOS and nitric oxide, which implies that free radicals may be involved in the pathogenesis of hypertension.
    Matched MeSH terms: Free Radicals/metabolism
  4. Zhang SS, Noordin MM, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):261-4.
    PMID: 11003114
    The influence of copper (Cu) overload on hepatic lipid peroxidation and antioxidation defense capacity was studied by overloading rats with copper sulphate orally (500 mg Cu/kg bw) 5 d/w for 8 w. Malondialdehyde (MDA), Cu-Zn superoxide dismutase (SOD), and Se-glutathione peroxidase (GSH-Px) were measured in serum and liver homogenate at 2, 4 and 8 w of dosing. Liver Cu concentration and alanine aminotransferase (ALT) activity were also determined. As Cu loading progressed, there were multiparameter changes with significant ALT elevation, increased MDA concentrations in serum and liver homogenate, and dramatic declines of SOD and GSH-Px activities in erythrocytes and whole blood respectively, along with marked elevation of hepatic Cu in the Cu-dosed group. Excessive Cu accumulation in the liver depressed SOD and GSH-Px activities and resulted in high MDA in serum and liver homogenate due to the lipid peroxidation induced by the Cu overload.
    Matched MeSH terms: Free Radicals/metabolism
  5. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M
    Reprod Biomed Online, 2014 Jul;29(1):32-58.
    PMID: 24813754 DOI: 10.1016/j.rbmo.2014.02.013
    Oxidative stress has been established as one of the main causes of male infertility and has been implicated in many diseases associated with infertile men. It results from high concentrations of free radicals and suppressed antioxidant potential, which may alter protein expression in seminal plasma and/or spermatozoa. In recent years, proteomic analyses have been performed to characterize the protein profiles of seminal ejaculate from men with different clinical conditions, such as high oxidative stress. The aim of the present review is to summarize current findings on proteomic studies performed in men with high oxidative stress compared with those with physiological concentrations of free radicals, to better understand the aetiology of oxidative stress-induced male infertility. Each of these studies has suggested candidate biomarkers of oxidative stress, among them are DJ-1, PIP, lactotransferrin and peroxiredoxin. Changes in protein concentrations in seminal plasma samples with oxidative stress conditions were related to stress responses and to regulatory pathways, while alterations in sperm proteins were mostly associated to metabolic responses (carbohydrate metabolism) and stress responses. Future studies should include assessment of post-translational modifications in the spermatozoa as well as in seminal plasma proteomes of men diagnosed with idiopathic infertility. Oxidative stress, which occurs due to a state of imbalance between free radicals and antioxidants, has been implicated in most cases of male infertility. Cells that are in a state of oxidative stress are more likely to have altered protein expression. The aim of this review is to better understand the causes of oxidative stress-induced male infertility. To achieve this, we assessed proteomic studies performed on the seminal plasma and spermatozoa of men with high levels of oxidative stress due to various clinical conditions and compared them with men who had physiological concentrations of free radicals. A variety of sperm and seminal plasma proteins were found to be expressed either in abundance (over-expressed) or in a lesser amount (underexpressed), while other proteins were found to be unique either to men with oxidative stress or to men with a balanced ratio of antioxidants/free radicals. Each study included in this review suggested several proteins that could possibly act as biomarkers of oxidative stress-induced male infertility, such as protein DJ-1, PIP, lactotransferrin and peroxiredoxin. Pathway analysis performed in these studies revealed that the changes in seminal plasma proteins in men with oxidative stress could be attributed to stress responses and regulatory pathways, while changes in sperm proteins were linked to stress responses and metabolic responses. Subsequent studies could look into post-translational modifications in the protein profile of men with idiopathic infertility. We hope that the information in this review will contribute to a better understanding of the main causes of idiopathic male infertility.
    Matched MeSH terms: Free Radicals/metabolism
  6. Khor SC, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S
    Oxid Med Cell Longev, 2017;2017:3868305.
    PMID: 28243354 DOI: 10.1155/2017/3868305
    During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.
    Matched MeSH terms: Free Radicals/metabolism
  7. Salim AS
    Intern. Med., 1993 May;32(5):359-64.
    PMID: 8400493
    This prospective randomized study investigated the possibility that duodenal ulcer relapse associated with Helicobacter Pylori infection is mediated by oxygen-derived free radicals. To this end, the radical scavengers allopurinol (50 mg 4 times daily) and dimethyl sulphoxide (DMSO, 500 mg 4 times daily) were administered orally. One hundred and forty-six consecutive patients with previous symptomatic endoscopy proven duodenal ulceration, which had been shown endoscopically to have healed in the presence of gastric mucosal infection with Helicobacter Pylori, were randomized to receive for the period of one year either placebo, or cimetidine 400 mg at bedtime, or allopurinol, or DMSO. In one hundred and twenty-six patients evaluable for efficacy, the cumulative relapse at one year was: placebo 47%, cimetidine 24%, allopurinol 6% and DMSO 6%. Cimetidine was significantly effective in preventing the relapse (p < 0.01), however allopurinol and DMSO were superior to cimetidine in this respect (p < 0.05). In the patients who relapsed, ulcer recurrence tended to occur early in those on placebo and cimetidine and to be evenly distributed over the year in those on free radical scavenging therapy. In all groups, ulcer recurrence throughout the maintenance year was more frequently symptomatic than silent. The incidence of infection with Helicobacter Pylori was not influenced by any of the regimens employed and the bacterium was detected with every relapse noted in this study and during the follow-up endoscopy which was carried out at 6 months and at 12 months during the maintenance year. The results suggest that oxygen-derived free radicals are involved in the relapse of duodenal ulceration in patients infected with Helicobacter Pylori.
    Matched MeSH terms: Free Radicals/metabolism
  8. Lee WC, Mokhtar SS, Munisamy S, Yahaya S, Rasool AHG
    Cell Mol Biol (Noisy-le-grand), 2018 May 30;64(7):60-69.
    PMID: 29974854
    Diabetes mellitus is an epidemic that is gaining global concern. Chronic hyperglycemia in diabetes induces the excess production of free radicals. The deleterious effects of excess free radicals are encountered by endogenous antioxidant defense system. Imbalance between free radicals production and antioxidants defense mechanisms leads to a condition known as "oxidative stress". Diabetes mellitus is associated with augmented oxidative stress that induced micro- and macrovascular complications, which presents a significant risk for cardiovascular events. Low vitamin D levels in the body have also been reported to be associated with the pathogenesis of diabetes and enhanced oxidative stress. The article is to review available literature and summarize the relationship between oxidative stress and vitamin D levels in diabetes. We also review the effects of vitamin D analogs supplementation in improving oxidative stress in diabetics.
    Matched MeSH terms: Free Radicals/metabolism
  9. Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA
    Trop Biomed, 2013 Sep;30(3):467-80.
    PMID: 24189677 MyJurnal
    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
    Matched MeSH terms: Free Radicals/metabolism
  10. Mollataghi A, Hadi AH, Awang K, Mohamad J, Litaudon M, Mukhtar MR
    Molecules, 2011 Aug 04;16(8):6582-90.
    PMID: 21818061 DOI: 10.3390/molecules16086582
    A new neolignan, 3,4-dimethoxy-3',4'-methylenedioxy-2,9-epoxy-6,7-cyclo-1,8-neolign-11-en-5(5H)-one, which has been named (+)-kunstlerone (1), together with six known alkaloids: (+)-norboldine (2), (+)-N-methylisococlaurine (3), (+)-cassythicine (4), (+)-laurotetanine (5), (+)-boldine (6) and (-)-pallidine (7), were isolated from the leaves of Beilschmiedia kunstleri. The structures were established through various spectroscopic methods notably 1D- and 2D-NMR, UV, IR and LCMS-IT-TOF. (+)- Kunstlerone (1) showed a strong antioxidant activity, with an SC(50) of 20.0 µg/mL.
    Matched MeSH terms: Free Radicals/metabolism
  11. Karimi E, Jaafar HZ
    Molecules, 2011 Aug 09;16(8):6791-805.
    PMID: 21829154 DOI: 10.3390/molecules16086791
    Microwave extraction of phytochemicals from medicinal plant materials has generated tremendous research interest and shown great potential. This research highlights the importance of microwave extraction in the analysis of flavonoids, isoflavonoid and phenolics and the antioxidant properties of extracts from three varieties of the Malaysian medicinal herb, Labisia pumila Benth. High and fast extraction performance ability, equal or higher extraction efficiencies than other methods, and the need for small samples and reagent volumes are some of the attractive features of this new promising microwave assisted extraction (MAE) technique. The aims of the present research were to determine the foliar phenolics and flavonoids contents of extracts of three varieties of L. pumila obtained by a microwave extraction method while flavonoid, isoflavonoid and phenolic compounds were analyzed using RP-HPLC. Furthermore, the antioxidant activities were measured by the DPPH and FRAP methods and finally, the chemical composition of the crude methanolic extracts of the leaves of all three varieties were analyzed by GS-MS.
    Matched MeSH terms: Free Radicals/metabolism
  12. Chu WL, Lim YW, Radhakrishnan AK, Lim PE
    BMC Complement Altern Med, 2010 Sep 21;10:53.
    PMID: 20858231 DOI: 10.1186/1472-6882-10-53
    BACKGROUND: Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals.

    METHODS: The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls).

    RESULTS: Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E.

    CONCLUSIONS: The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

    Matched MeSH terms: Free Radicals/metabolism
  13. Chaudhuri JD
    Med Sci Monit, 2000 Sep-Oct;6(5):1031-41.
    PMID: 11208451
    Fetal alcohol syndrome (FAS) is a collection of signs and symptoms seen in some children exposed to alcohol in the prenatal period. It is characterized mainly by physical and mental retardation, craniofacial anomalies and minor joint abnormalities. However, with the increasing incidence of FAS, there is a great variation in the clinical features of FAS. This article describes in detail these clinical features. Due to ethical reasons it is not possible to perform experiments on pregnant women. Hence to study the effects of alcohol, various animal and avian experimental models have been chosen. The various experimental findings and human correlation are described. The exact mechanism by which alcohol induces its teratogenic effects is not known. The possible mechanisms are discussed. Measures to prevent the occurrence of FAS have been suggested.
    Matched MeSH terms: Free Radicals/metabolism
  14. Kadhum AA, Al-Amiery AA, Musa AY, Mohamad AB
    Int J Mol Sci, 2011;12(9):5747-61.
    PMID: 22016624 DOI: 10.3390/ijms12095747
    The antioxidant activity of two synthesized coumarins namely, N-(4,7-dioxo-2- phenyl-1,3-oxazepin-3(2H,4H,7H)-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 5 and N-(4-oxo-2-phenylthiazolidin-3-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 6 were studied with the DPPH, hydrogen peroxide and nitric oxide radical methods and compared with the known antioxidant ascorbic acid. Compounds 5 and 6 were synthesized in a good yield from the addition reaction of maleic anhydride or mercaptoacetic acid to compound 4, namely N'-benzylidene-2-(2-oxo-2H-chromen-4-yloxy)acetohydrazide. Compound 4 was synthesized by the condensation of compound 3, namely 2-(2-oxo-2H-chromen-4-yloxy) acetohydrazide, with benzaldehyde. Compound 3, however, was synthesized from the addition of hydrazine to compound 2, namely ethyl 2-(2-oxo-2H-chromen-4-yloxy)acetate, which was synthesized from the reaction of ethyl bromoacetate with 4-hydroxycoumarin 1. Structures for the synthesized coumarins 2-6 are proposed on the basis of spectroscopic evidence.
    Matched MeSH terms: Free Radicals/metabolism
  15. Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S
    PLoS One, 2016;11(2):e0149265.
    PMID: 26885980 DOI: 10.1371/journal.pone.0149265
    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.
    Matched MeSH terms: Free Radicals/metabolism
  16. Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP
    Neurotox Res, 2005;7(4):293-318.
    PMID: 16179266
    The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
    Matched MeSH terms: Free Radicals/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links