PATIENTS AND METHODS: Between January 2017 and December 2018, a total of 120 patients (101 males, 19 females; mean age: 35.1±3.0 years; range, 18 to 72 years) treated with IMN for closed DFFs were retrospectively analyzed. Data including age, sex, location, weight, height, comorbidities such as diabetes mellitus, hypertension or kidney injury, date of injury, mechanism of injury, type of femoral fractures (AO classification), date of surgery, duration of surgery, IMN length and diameter used, date of radiological fracture union and complications of surgery such as nonunion, delayed union, and infections were recorded.
RESULTS: Of the patients, 63 had obesity and 57 did not have obesity. There was a statistically significant difference in fracture configuration among patients with obesity; they sustained type B (p=0.001) and type C (p=0.024), the most severe fracture configuration. The nonunion rate was 45%. Obesity had a significant relationship with fracture nonunion with patients with obesity having the highest number of nonunion rates (n=40, 74.1%) compared to those without obesity (n=14, 25.9%) (p=0.001). Fracture union was observed within the first 180 days in 78.9% of patients without obesity, while it developed in the same time interval in only 38.1% of patients with obesity (p=0.001).
CONCLUSION: Fracture union time for the patients with obesity was longer, regardless of the fracture configuration. Obesity strongly affects fracture union time in DFFs treated with an IMN. Obesity should be considered a relative risk in decision-making in the choice of fixation while treating midshaft femoral fractures.
KEY WORDS: Femur nonunion, interlocking nail, symptoms before breakage of nail.
Material and Methods: Four FNEs were retrieved from revision surgeries of four patients with prior intramedullary nail fixation of their pertrochanteric hip fractures complicated by femoral head perforation. The FNEs were divided into two groups based on whether or not there was radiographic evidence of medial migration prior to the revisions. Wear patterns on the FNEs were then assessed using both scanning electron microscopy and light microscopy.
Results: Repetitive, linearly-arranged, regularly-spaced, unique transverse scratch marks were found only in the group with medial migration, corresponding to the specific segment of the FNE that passed through the intramedullary component of the PFNA during medial migration. These scratch marks were absent in the group without medial migration.
Conclusion: Our findings are in support of a ratcheting mechanism behind the medial migration phenomenon with repetitive toggling at the intramedullary nail-FNE interface and progressive propagation of the FNE against gravity.