Displaying all 7 publications

Abstract:
Sort:
  1. Rosli NA, Karamanlioglu M, Kargarzadeh H, Ahmad I
    Int J Biol Macromol, 2021 Sep 30;187:732-741.
    PMID: 34358596 DOI: 10.1016/j.ijbiomac.2021.07.196
    Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.
    Matched MeSH terms: Enzymes/chemistry*
  2. Singh L, Rana S, Thakur S, Pant D
    Trends Biotechnol, 2020 05;38(5):469-473.
    PMID: 31932067 DOI: 10.1016/j.tibtech.2019.12.017
    Recent bioinspired efforts of designing novel nanoenzyme-based electrocatalysts are driven by the urgency of making bioelectrofuels more affordable and efficient. Unlike natural enzymes, nanoenzyme-modified electrodes with large surface areas enclose numerous biomimicking active sites to facilitate enhanced microbial growth followed by increased reactant-to-bioelectrofuel conversion.
    Matched MeSH terms: Enzymes/chemistry*
  3. Kamaruddin AH, Uzir MH, Aboul-Enein HY, Halim HN
    Chirality, 2009 Apr;21(4):449-67.
    PMID: 18655180 DOI: 10.1002/chir.20619
    This review tracks a decade of dynamic kinetic resolution developments with a biocatalytic inclination using enzymatic/microbial means for the resolution part followed by the racemization reactions either by means of enzymatic or chemocatalyst. These fast developments are due to the ability of the biocatalysts to significantly reduce the number of synthetic steps which are common for conventional synthesis. Future developments in novel reactions and products of dynamic kinetic resolutions should consider factors that are needed to be extracted at the early synthetic stage to avoid inhibition at scale-up stage have been highlighted.
    Matched MeSH terms: Enzymes/chemistry
  4. Adhikary AK, Hanaoka N, Fujimoto T
    Biomed Res Int, 2014;2014:363790.
    PMID: 24734232 DOI: 10.1155/2014/363790
    Restriction endonuclease analyses (REAs) constitute the only inexpensive molecular approach capable of typing and characterizing human adenovirus (HAdV) strains based on the entire genome. However, the application of this method is limited by the need for time-consuming and labor-intensive procedures. We herein developed a simple and cost-effective REA for assessing HAdV. The method consists of (1) simple and cost-effective DNA extraction, (2) fast restriction endonuclease (RE) digestion, and (3) speedy mini agarose gel electrophoresis. In this study, DNA was isolated according to the kit-based method and 21.0 to 28.0  μg of viral DNA was extracted from prototypes (HAdV-1, HAdV-3, HAdV-4, and HAdV-37) in each flask. The amount of DNA ranged from 11.4 to 57.0  μg among the HAdV-3 (n=73) isolates. The obtained viral DNA was found to be applicable to more than 10 types of REAs. Fast-cut restriction endonucleases (REs) were able to digest the DNA within 15 minutes, and restriction fragments were easily separated via horizontal mini agarose gel electrophoresis. The whole procedure for 10 samples can be completed within approximately six hours (the conventional method requires at least two days). These results show that our REA is potentially applicable in many laboratories in which HAdVs are isolated.
    Matched MeSH terms: DNA Restriction Enzymes/chemistry*
  5. Ling JWA, Chang LS, Babji AS, Lim SJ
    J Sci Food Agric, 2020 Oct;100(13):4714-4722.
    PMID: 32468613 DOI: 10.1002/jsfa.10530
    BACKGROUND: Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively).

    RESULTS: The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (

    Matched MeSH terms: Enzymes/chemistry
  6. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, et al.
    Biomed Res Int, 2014;2014:307519.
    PMID: 25165697 DOI: 10.1155/2014/307519
    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
    Matched MeSH terms: Enzymes/chemistry*
  7. Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525366 DOI: 10.3390/ijms22031274
    MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
    Matched MeSH terms: DNA Repair Enzymes/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links