Displaying all 6 publications

Abstract:
Sort:
  1. Keikhosrokiani P, Mustaffa N, Zakaria N, Sarwar MI
    PMID: 23138083
    Healthcare for elderly people has become a vital issue. The Wearable Health Monitoring System (WHMS) is used to manage and monitor chronic disease in elderly people, postoperative rehabilitation patients and persons with special needs. Location-aware healthcare is achievable as positioning systems and telecommunications have been developed and have fulfilled the technology needed for this kind of healthcare system. In this paper, the researchers propose a Location-Based Mobile Cardiac Emergency System (LMCES) to track the patient's current location when Emergency Medical Services (EMS) has been activated as well as to locate the nearest healthcare unit for the ambulance service. The location coordinates of the patients can be retrieved by GPS and sent to the healthcare centre using GPRS. The location of the patient, cell ID information will also be transmitted to the LMCES server in order to retrieve the nearest health care unit. For the LMCES, we use Dijkstra's algorithm for selecting the shortest path between the nearest healthcare unit and the patient location in order to facilitate the ambulance's path under critical conditions.
    Matched MeSH terms: Emergency Medical Services/methods*
  2. Balasingam M
    Int J Clin Pract, 2017 Sep;71(9).
    PMID: 28851081 DOI: 10.1111/ijcp.12989
    This is a medical kitty hawk moment. Drones are pilotless aircrafts that were initially used exclusively by the military but are now also used for various scientific purposes, public safety, and in commercial industries. The healthcare industry in particular can benefit from their technical capabilities and ease of use. Common drone applications in medicine include the provision disaster assessments when other means of access are severely restricted; delivering aid packages, medicines, vaccines, blood and other medical supplies to remote areas; providing safe transport of disease test samples and test kits in areas with high contagion; and potential for providing rapid access to automated external defibrillators for patients in cardiac arrest. Drones are also showing early potential to benefit geriatric medicine by providing mobility assistance to elderly populations using robot-like technology. Looking further to the future, drones with diagnostic imaging capabilities may have a role in assessing health in remote communities using telemedicine technology. The Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA) in the European Union are some examples of legislative bodies with regulatory authority over drone usage. These agencies oversee all technical, safety, security and administrative issues related to drones. It is important that drones continue to meet or exceed the requirements specified in each of these regulatory areas. The FAA is challenged with keeping pace legislatively with the rapid advances in drone technology. This relative lag has been perceived as slowing the proliferation of drone use. Despite these regulatory limitations, drones are showing significant potential for transforming healthcare and medicine in the 21st century.
    Matched MeSH terms: Emergency Medical Services/methods*
  3. Mohd Saiboon I, Jaafar MJ, Ahmad NS, Nasarudin NM, Mohamad N, Ahmad MR, et al.
    Med Teach, 2014 Mar;36(3):245-50.
    PMID: 24295218 DOI: 10.3109/0142159X.2013.857013
    Self-instruction video (SIV) has been widely explored as a teaching mode for cardiopulmonary resuscitation (CPR) and automated external defibrillation (AED), but not with other basic emergency skills.
    Matched MeSH terms: Emergency Medical Services/methods*
  4. Seak CJ, Yen DH, Ng CJ, Wong YC, Hsu KH, Seak JC, et al.
    PLoS One, 2017;12(9):e0184813.
    PMID: 28915258 DOI: 10.1371/journal.pone.0184813
    OBJECTIVE: This study aims to evaluate the performance of Rapid Emergency Medicine Score (REMS), Rapid Acute Physiology Score (RAPS), and Modified Early Warning Score (MEWS) in ascertaining the severity of illness and predicting the mortality of adult hepatic portal venous gas (HPVG) patients presenting to the emergency department (ED). This will assist emergency physicians (EPs) in risk stratification.

    METHODS: Data for 66 adult HPVG patients who visited the EDs of 2 research hospitals between October 1999 and April 2016 were analyzed. REMS, RAPS, and MEWS were calculated based on data in the ED, and probability of death was calculated for each patient based on these scores. The ability of REMS, RAPS, and MEWS to predict group mortality was assessed by using receiver operating characteristic (ROC) curve analysis and calibration analysis.

    RESULTS: The sensitivity, specificity, and accuracy for each scoring system were 92.1%, 89.3%, and 90.9% for REMS, 86.8%, 82.1%, and 84.8% for RAPS, and 78.9%, 89.3%, and 83.3% for MEWS respectively. In the ROC curve analysis, the areas under the curve for REMS, RAPS, and MEWS were 0.929, 0.877, and 0.856 respectively.

    CONCLUSION: Our study is the largest series performed in a population of adult HPVG patients in the ED. The results from this study demonstrate that REMS is superior in predicting the mortality of these patients compared to RAPS and MEWS. We therefore recommend that REMS be used for outcome prediction and risk stratification of adult HPVG in the ED.

    Matched MeSH terms: Emergency Medical Services/methods*
  5. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, et al.
    J Med Syst, 2018 Mar 22;42(5):80.
    PMID: 29564649 DOI: 10.1007/s10916-018-0943-4
    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
    Matched MeSH terms: Emergency Medical Services/methods*
  6. Shah Jahan MY, Shamila MA, Nurul Azlean N, Mohd Amin M, Anandakumar K, Ahmad Ibrahim KB, et al.
    Med J Malaysia, 2019 08;74(4):300-306.
    PMID: 31424037
    INTRODUCTION: Trauma is a Global threat and the 5th highest cause of all-cause mortality in Malaysia caused predominantly due to road traffic accidents. Majority of trauma victims are young adults aged between 21-40 years old. In Malaysia, 24 out of 100,000 population die annually due to trauma, rating us amongst the highest in South East Asia. These alarming figures justify aggressive preventive and mitigation strategies. The aim of this paper is to promote the implementation of evidence-based interventions that will reduce the rate of preventable death because of trauma. Tranexamic acid is one of the few interventions in the early management of severe trauma with level-one evidence. Tranexamic acid has been proven to reduce all causes of mortality and mortality due to bleeding. Evidence proves that it is most effective when administered early, particularly within the 1st hour of trauma. This proposed guideline is formulated based upon quality evidence from multicentre studies, clinical practices in other countries and consideration of the local demographic factors with the intent of enabling an easy and simple pathway to administer tranexamic acid early in the care of the severely injured.

    CONCLUSION: The guideline highlights select pre-hospital criteria's and the methods for drug administration. The authors recognise that some variants may be present amongst certain institutions necessitating minor adaptations, nevertheless the core principles of advocating tranexamic acid early in the course of pre-hospital trauma should be adhered to.

    Matched MeSH terms: Emergency Medical Services/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links