Displaying all 4 publications

Abstract:
Sort:
  1. Choudhary MI, Ismail M, Shaari K, Abbaskhan A, Sattar SA, Lajis NH, et al.
    J Nat Prod, 2010 Apr 23;73(4):541-7.
    PMID: 20356064 DOI: 10.1021/np900551u
    Phytochemical and cytotoxicity investigations on organic solvent extracts of the aerial parts of Tinospora crispa have led to the isolation of 15 cis-clerodane-type furanoditerpenoids. Of these, nine compounds (1-9) were found to be new. Spectroscopic assignments of a previously reported compound, borapetoside A (13), were revised on the basis of HMQC and HMBC correlations. No discernible activity was observed when compounds 10-13 were subjected to evaluation in cytotoxicity assays against human prostate cancer (PC-3) and the normal mouse fibroblast (3T3) cell lines.
    Matched MeSH terms: Diterpenes, Clerodane/isolation & purification*; Diterpenes, Clerodane/pharmacology; Diterpenes, Clerodane/chemistry
  2. Ng SY, Kamada T, Suleiman M, Vairappan CS
    Nat Prod Res, 2018 Aug;32(15):1832-1837.
    PMID: 29156972 DOI: 10.1080/14786419.2017.1405409
    The Bornean liverwort Gottschelia schizopleura was investigated phytochemically for the first time. Two new and four previously known clerodane-type diterpenoids were isolated from the MeOH extract of G. schizopleura through a series of chromatographic techniques. The structures of the new metabolites were established by analyses of their spectroscopic data (1D NMR, 2D NMR, HRESIMS and IR). All the isolated compounds 1-6 were tested against human promyelocytic leukaemia (HL-60), human colon adenocarcinoma (HT-29) and Mus musculus skin melanoma (B16-F10). Compound 1 and 2 showed active inhibition against HL-60 and B16-F10 cells.
    Matched MeSH terms: Diterpenes, Clerodane/pharmacology; Diterpenes, Clerodane/chemistry*
  3. Ahmad W, Jantan I, Bukhari SN
    Front Pharmacol, 2016;7:59.
    PMID: 27047378 DOI: 10.3389/fphar.2016.00059
    Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae), found in the rainforests or mixed deciduous forests in Asia and Africa, is used in traditional medicines to treat numerous health conditions. This review summarizes the up-to-date reports about the ethnobotany, phytochemistry, pharmacological activities, toxicology, and clinical trials of the plant. It also provides critical assessment about the present knowledge of the plant which could contribute toward improving its prospect as a source of lead molecules for drug discovery. The plant has been used traditionally in the treatment of jaundice, rheumatism, urinary disorders, fever, malaria, diabetes, internal inflammation, fracture, scabies, hypertension, reducing thirst, increasing appetite, cooling down the body temperature, and maintaining good health. Phytochemical analyses of T. crispa revealed the presence of alkaloids, flavonoids, and flavone glycosides, triterpenes, diterpenes and diterpene glycosides, cis clerodane-type furanoditerpenoids, lactones, sterols, lignans, and nucleosides. Studies showed that the crude extracts and isolated compounds of T. crispa possessed a broad range of pharmacological activities such as anti-inflammatory, antioxidant, immunomodulatory, cytotoxic, antimalarial, cardioprotective, and anti-diabetic activities. Most pharmacological studies were based on crude extracts of the plant and the bioactive compounds responsible for the bioactivities have not been well identified. Further investigations are required to transform the experience-based claims on the use of T. crispa in traditional medicine practices into evidence-based information. The plant extract used in pharmacological and biological studies should be qualitatively and quantitatively analyzed based on its biomarkers. There should be detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more elaborate toxicity study to ensure safety of the plant for human use. More clinical trials are encouraged to be carried out if there are sufficient preclinical and safety data.
    Matched MeSH terms: Diterpenes, Clerodane
  4. Aziz AN, Ismail NH, Halim SNA, Looi CY, Anouar EH, Langat MK, et al.
    Phytochemistry, 2018 Dec;156:193-200.
    PMID: 30316148 DOI: 10.1016/j.phytochem.2018.10.002
    A phytochemical investigation of the stem barks of the Malaysian Croton oblongus Burm.f. (Syn. Croton laevifolius Blume) (Euphorbiaceae) yielded seven previously undescribed ent-neo-clerodane diterpenoids, laevifins A - G and the known crovatin (3). Structures were established by a combination of spectroscopic methods including HRESIMS, NMR spectroscopy and X-ray crystallography. The absolute configuration of crovatin and laevifins A-G was established by comparison of experimental ECD and theoretical TDDFT ECD calculated spectra. This is the first report on the occurrence of the sesquiterpenoid cryptomeridiol in a Croton species. In vitro cytotoxicity assays on laevifins A, B and G showed moderate activities against the MCF-7 cancer cell line (IC50 102, 115 and 106 μM, respectively) while β-amyrin and acetyl aleuritolic acid showed good anti-inflammatory activity on the LPS-induced NF-κB translocation inhibition in RAW 264.7 cells assay with IC50 values of 23.5 and 35.4 μg/mL, respectively.
    Matched MeSH terms: Diterpenes, Clerodane/isolation & purification; Diterpenes, Clerodane/pharmacology*; Diterpenes, Clerodane/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links