Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
Glycerol is a by-product produced from biodiesel, fatty acid, soap and bioethanol industries. Today, the value of glycerol is decreasing in the global market due to glycerol surplus, which primarily resulted from the speedy expansion of biodiesel producers around the world. Numerous studies have proposed ways of managing and treating glycerol, as well as converting it into value-added compounds. The electrochemical conversion method is preferred for this transformation due to its simplicity and hence, it is discussed in detail. Additionally, the factors that could affect the process mechanisms and products distribution in the electrochemical process, including electrodes materials, pH of electrolyte, applied potential, current density, temperature and additives are also thoroughly explained. Value-added compounds that can be produced from the electrochemical conversion of glycerol include glyceraldehyde, dihydroxyacetone, glycolic acid, glyceric acid, lactic acid, 1,2-propanediol, 1,3-propanediol, tartronic acid and mesoxalic acid. These compounds are found to have broad applications in cosmetics, pharmaceutical, food and polymer industries are also described. This review will be devoted to a comprehensive overview of the current scenario in the glycerol electrochemical conversion, the factors affecting the mechanism pathways, reaction rates, product selectivity and yield. Possible outcomes obtained from the process and their benefits to the industries are discussed. The utilization of solid acid catalysts as additives for future studies is also suggested.
The completion of Escherichia coli K1 genome has identified several genomic islands that are present in meningitis-causing E. coli RS218 but absent in the non-pathogenic E. coli MG1655. In this study, the role of various genomic islands in E. coli K1 interactions with intestinal epithelial cells (Caco-2) and kidney epithelial cells (MA104) was determined. Using association assays, invasion assays, and intracellular survival assays, the findings revealed that the genomic island deletion mutants of RS218 related to P fimbriae, S fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, protein secretion system (T1SS for hemolysin; T2SS; T5SS for antigen 43), Iro system and hmu system), invasins (CNF1, IbeA), toxins (α-hemolysin), K1 capsule biosynthesis, metabolism (d-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism), prophage genes, showed reduced interactions with both cell types. Next, we determined the role of various genomic islands in E. coli K1 resistance to serum. When exposed to the normal human serum, the viability of the genomic island deletion mutants related to adhesins such as S fimbriae, P fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, antigen 43 and T5SS for antigen 43, T2SS, and T1SS for hemolysin, Iro system and hmu system, prophage genes, metabolism (sugar metabolism and d-serine catabolism), K1 capsule biosynthesis, and invasins such as CNF1 was affected, suggesting their role in bacteremia. The characterization of these genomic islands should reveal mechanisms of E. coli K1 pathogenicity that could be of value as therapeutic targets.
In recent years, the rapid swift increase in world biodiesel production has caused an oversupply of its by-product, glycerol. Therefore, extensive research is done worldwide to convert glycerol into numerous high added-value chemicals i.e., glyceric acid, 1,2-propanediol, acrolein, glycerol carbonate, dihydroxyacetone, etc. Hydroxyl acids, glycolic acid and lactic acid, which comprise of carboxyl and alcohol functional groups, are the focus of this study. They are chemicals that are commonly found in the cosmetic industry as an antioxidant or exfoliator and a chemical source of emulsifier in the food industry, respectively. The aim of this study is to selectively convert glycerol into these acids in a single compartment electrochemical cell. For the first time, electrochemical conversion was performed on the mixed carbon-black activated carbon composite (CBAC) with Amberlyst-15 as acid catalyst. To the best of our knowledge, conversion of glycerol to glycolic and lactic acids via electrochemical studies using this electrode has not been reported yet. Two operating parameters i.e., catalyst dosage (6.4-12.8% w/v) and reaction temperature [room temperature (300 K) to 353 K] were tested. At 353 K, the selectivity of glycolic acid can reach up to 72% (with a yield of 66%), using 9.6% w/v catalyst. Under the same temperature, lactic acid achieved its highest selectivity (20.7%) and yield (18.6%) at low catalyst dosage, 6.4% w/v.
Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.