Displaying all 19 publications

Abstract:
Sort:
  1. Thayer KE
    Dent J Malaysia Singapore, 1969 May;9(1):15-21.
    PMID: 4897856
    Matched MeSH terms: Denture Retention
  2. Sivakumar I, Arunachalam S, Buzayan MM
    J Dent Educ, 2023 Jun;87 Suppl 1:892-894.
    PMID: 36469857 DOI: 10.1002/jdd.13153
    Matched MeSH terms: Denture Retention
  3. Patil PG, Seow LL, Kweh TJ, Nimbalkar S
    J Contemp Dent Pract, 2021 Nov 01;22(11):1346-1354.
    PMID: 35343463
    AIM: The purpose of this review is to compare randomized clinical trials evaluating the peri-implant tissue outcomes using different unsplinted attachment systems in two implant-retained mandibular overdentures.

    BACKGROUND: Literature lacks information on various unsplinted attachment systems and their effect on peri-implant tissue health. A focus question (as per PICOS) was set as follows: Does one particular unsplinted attachment system (I) compared with another (C) results in better peri-implant outcomes (O) in two implant-retained mandibular overdentures (P) using randomized controlled trials (RCTs) (S)? The literature search was conducted in the PubMed, MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL) databases between January 2011 and December 2021. The keywords used were "denture, overlay," "denture," "overlay" AND "dental prosthesis, implant supported," "dental implants," "dental implant abutment design" AND "jaw, edentulous," "mouth, edentulous" AND "mandible." Only RCTs on two implant-retained mandibular overdentures using unsplinted attachment systems measuring peri-implant tissue outcomes with minimum 1-year follow-up were selected. In total, 224 studies were identified in initial search, and 25 were shortlisted for full-text evaluation. Four studies were included for systematic review upon considering inclusion and exclusion criteria. The risk of bias was evaluated using Cochrane Risk of Bias Tool 2.0 (RoB 2.0).

    REVIEW RESULTS: A total of 41 patients received ball attachments (in 3 studies), 36 patients received low-profile attachments (in 3 studies), 16 patients received magnet attachments (in 1 study), and 13 patients received telescopic attachments (in 1 study). All four studies used standard sized implants, however, differed in implant manufacturers. Two studies which compared ball attachments low-profile attachments revealed-similar peri-implant tissue health parameters but differed in crestal bone-level changes. One study compared ball with telescopic attachments and revealed similar results in crestal bone-level changes and all four peri-implant tissue health parameters. Single study compared magnets with low-profile attachments and shown lesser bone loss with magnet attachments. Single study was judged to have low risk of bias, single with some concerns, and remaining two to have high risk of bias.

    CONCLUSION: Gingival index and bleeding index of the patients were not influenced by any of the unsplinted overdenture attachment (stud, magnet, telescopic) system. Inconclusive results found among the studies evaluated comparing crestal bone loss and plaque index.

    CLINICAL SIGNIFICANCE: This review manuscript has simplified comparative analysis of different unsplinted attachment systems used in two implant mandibular overdentures to help clinicians choose correct system in such situation.

    Matched MeSH terms: Denture Retention/methods
  4. Ann LK
    Dent J Malaysia Singapore, 1968 Feb;8(1):29-32.
    PMID: 4882517
    Matched MeSH terms: Denture Retention
  5. Baig MR, Rajan G
    J Oral Implantol, 2010;36(1):31-5.
    PMID: 20218868 DOI: 10.1563/AAID-JOI-D-09-00062
    This article describes the dental implant-based rehabilitation of a partially edentulous patient with a unilateral maxillary dento-alveolar defect. A screw-retained prosthesis with a modified design was fabricated on zygomatic and regular dental implants. One section of the implant prosthesis has cemented crowns and the other section is conventional screw-retained. The design of the prosthesis overcame the hard and soft tissue deficit and provided the desired esthetics.
    Matched MeSH terms: Denture Retention/instrumentation*; Denture Retention/methods*
  6. Loke LT
    Dent J Malaysia Singapore, 1969 Oct;9(2):34-44.
    PMID: 4906531
    Matched MeSH terms: Denture Retention
  7. Rajeshwari K, Kohli S, Mathew XK
    J Clin Diagn Res, 2017 Apr;11(4):ZC61-ZC63.
    PMID: 28571264 DOI: 10.7860/JCDR/2017/23709.9683
    INTRODUCTION: Presence of abnormal resting tongue position can lead to poor denture retention and stability. The prevalence of retracted tongue position has been found to be higher in partially edentulous subjects compared to dentate subjects and is greatest in completely edentulous individuals.

    AIM: To evaluate resting tongue position in recently extracted and long term completely edentulous patients, and to evaluate the efficacy of achieving retracted tongue position by simple modification in complete denture along with certain tongue exercises.

    MATERIALS AND METHODS: A total of 62 study subjects were classified into two groups based on duration of edentulousness. Group A: Recently extracted completely edentulous subjects (<1 year), Group B: Long term completely edentulous subjects (>1-10 year). The patients with retracted tongue position were subjected to a simple modification in complete denture along with inclusion of certain tongue exercises. After eight months patients were recalled and evaluated. The data was analysed using SPSS statistical tests like mean, standard deviation, proportion, Chi square test and McNemar Test.

    RESULTS: Among the study subjects, 54.9% had retracted tongue position. Group B showed high proportion of retracted tongue position (68.8%) as compared to Group A. After the intervention, 42.8% study subjects gained normal resting tongue position.

    CONCLUSION: Long term completely edentulous subjects presented retracted tongue position in higher percentage when compared to the recently extracted group. The interventional method employed for the subjects with retracted tongue position, played a significant role to assume normal resting tongue position and showed improvement in denture stability and retention.

    Matched MeSH terms: Denture Retention
  8. Murthy V, Sethuraman KR, Rajaram S, Choudhury S
    J Indian Prosthodont Soc, 2021 4 10;21(1):88-98.
    PMID: 33835073 DOI: 10.4103/jips.jips_373_20
    Aim: The aim of the study was to evaluate the effect of dentist's communication skills and patient's psychological factors in predicting denture satisfaction and quality of life.

    Settings and Design: Cohort study.

    Materials and Methods: Patient-related variables were obtained using questionnaires in both pre- and post-intervention phases. In addition to this, in preintervention phase, lacunae in doctor-patient communication were obtained. Based on this, the postgraduates were trained in relevant communication skills required during complete denture treatment. In postintervention phase, the postgraduates were again followed up for continuation or decay of skills.

    Statistical Analysis: Mixed-mode approach - quantitative and qualitative analysis.

    Results: Both groups were similar in psychological parameters, personality domains, denture quality and quality of life at baseline. However, there was significant difference in denture satisfaction (P < 0.001) in both the groups. In the experimental group, denture satisfaction was more (80.4%) and quality of life had improved from baseline to 3 months (P = 0.000). Denture satisfaction was associated with self-efficacy (P = 0.002) and the communication skills of the dentist (P = 0.000). Quality of life was associated with the conscientiousness domain of personality (P = 0.049) and the communication skills of the dentist (P < 0.05).

    Conclusion: Satisfaction and quality of life with dentures were associated with self-efficacy, conscientiousness domain and the communication skills of the dentist. Denture satisfaction can be predicted by dentist communication skills. Therefore, training in communication skills for complete denture patient management and assessment of the psychological profile of the patient could contribute to the effective patient-centered practice to avoid patient dissatisfaction.

    Matched MeSH terms: Denture Retention
  9. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Denture Retention
  10. Khuder T, Yunus N, Sulaiman E, Dabbagh A
    J Mech Behav Biomed Mater, 2017 11;75:97-104.
    PMID: 28709037 DOI: 10.1016/j.jmbbm.2017.06.039
    Denture fracture is a common clinical complication caused by improper material selection, design, or fabrication technique. This study aimed to investigate the effect of two attachment systems on fracture risk of the implant-overdentures (IOD) via finite element analysis (FEA), using the force distributions obtained from patients' occlusal analyses and to compare the obtained results with the clinical complications associated with these attachments. A three-dimensional jaw model comprised of the edentulous bones was constructed. Three types of mandibular prostheses including complete denture (CD) (model LCD), IOD with Locator attachment (model LID-L), and IOD with telescopic attachment (model LID-T), as well as a maxillary CD (model UCD) were assembled. The vertical occlusal forces at anterior and posterior quadrants were obtained from the patients wearing mandibular CDs or IODs. The FEA results were further compared with the mechanical failures of different prostheses observed at patient recalls. In overall, the fracture risk of mandibular prostheses was lower than the maxillary compartments. The UCD opposing LCD underwent higher strains than that opposing LID-L and LID-T, which was mostly concentrated at the anterior mid-palatal polished surface. On the other hand, LID-L showed the lowest strain, followed by LID-T, and LCD. The obtained results were consistent with the clinical complications observed in the patient recalls.
    Matched MeSH terms: Denture Retention
  11. Alsrouji MS, Ahmad R, Ibrahim N, Kuntjoro W, Al-Harbi FA, Baba NZ
    J Prosthodont, 2019 Apr;28(4):373-378.
    PMID: 30875139 DOI: 10.1111/jopr.13047
    PURPOSE: Blood flow disturbance from functional pressure may lead to ischemia and accumulation of metabolites leading to residual ridge resorption (RRR) underneath complete dentures. The purposes of this study were to determine the effect of mandibular complete denture (CD) and implant-retained overdenture (IRO) on blood flow disturbance in the opposing denture bearing-mucosa of maxillary CD and to compare the blood flow disturbance to RRR of the anterior maxilla.

    MATERIALS AND METHODS: The test group included 9 participants rehabilitated by maxillary CD opposing mandibular IRO, while the control group consisted of 4 participants with CDs. Blood flow was measured by laser Doppler flowmetry (LDF) after denture removal for 0, 30, 60, and 90 minutes. RRR was quantified as reduction in bone volume a year post-treatment. The measurement of blood flow was then compared to the quantification of RRR.

    RESULTS: The mean blood flow measure for the IRO group was significantly lower than CD after immediate denture removal and 30 minutes later. After 60 minutes, the mean difference was not significant between groups, and at 90 minutes, the mean blood flow of both groups equalized to reach a steady state of 377 BPU. The mandibular IRO had reduced the initial blood flow measure in the opposing anterior maxilla mucosa to almost a quarter (103 BPU) of the steady state value (377 BPU) compared to the CD, which reduced it to only about one half (183 BPU), suggesting greater blood flow disturbance in the IRO group. This result is in tandem with the greater reduction of bone volume observed in the IRO group, which was 7.3 ± 1.3% after a year, almost three times higher than CD group at 2.6 ± 1.7%.

    CONCLUSION: IRO may cause significantly higher blood flow disturbance than CD and may have contributed to greater RRR in the anterior maxilla.

    Matched MeSH terms: Denture Retention
  12. Chen J, Ahmad R, Suenaga H, Li W, Swain M, Li Q
    J Biomech, 2015 Feb 5;48(3):512-9.
    PMID: 25560272 DOI: 10.1016/j.jbiomech.2014.11.043
    Although implant-retained overdenture allows edentulous patients to take higher occlusal forces than the conventional complete dentures, the biomechanical influences have not been explored yet. Clinically, there is limited knowledge and means for predicting localized bone remodelling after denture treatment with and without implant support. By using finite element (FE) analysis, this article provides an in-silico approach to exploring the treatment effects on the oral mucosa and potential resorption of residual ridge under three different denture configurations in a patient-specific manner. Based on cone beam computerized tomography (CBCT) scans, a 3D heterogeneous FE model was created; and the supportive tissue, mucosa, was characterized as a hyperelastic material. A measured occlusal load (63N) was applied onto three virtual models, namely complete denture, two and four implant-retained overdentures. Clinically, the bone resorption was measured after one year in the two implant-retained overdenture treatment. Despite the improved stability and enhanced masticatory function, the implant-retained overdentures demonstrated higher hydrostatic stress in mucosa (43.6kPa and 39.9kPa for two and four implants) at the posterior ends of the mandible due to the cantilever effect, than the complete denture (33.4kPa). Hydrostatic pressure in the mucosa signifies a critical indicator and can be correlated with clinically measured bone resorption, pointing to severer mandibular ridge resorption posteriorly with implant-retained overdentures. This study provides a biomechanical basis for denture treatment planning to improve long-term outcomes with minimal residual ridge resorption.
    Matched MeSH terms: Denture Retention/instrumentation*
  13. Ling BC
    Quintessence Int, 1995 Dec;26(12):871-7.
    PMID: 8596818
    This article presents an alternative to the conventional swing-lock de sign of removable partial denture construction. It incorporates the principles of sectional dentures as well as the swing-lock concept and overcomes some of the limitations of conventional swing-lock dentures. I-bar struts and stainless steel keepers form part of the first section of the denture. The second part of the denture consists of the denture base with the artificial teeth and magnetic retention units. This system has been used successfully in a number of patients whose situations were suitable for the conventional swing-lock design.
    Matched MeSH terms: Denture Retention/instrumentation*
  14. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Denture Retention/instrumentation; Denture Retention/methods*
  15. Shankargouda SB, Sidhu P, Kardalkar S, Desai PM
    J Prosthodont, 2017 Feb;26(2):168-171.
    PMID: 26479878 DOI: 10.1111/jopr.12385
    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship.
    Matched MeSH terms: Denture Retention
  16. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Feb;131(2):281.e1-281.e9.
    PMID: 37985307 DOI: 10.1016/j.prosdent.2023.10.023
    STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions.

    MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05).

    RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (P

    Matched MeSH terms: Denture Retention
  17. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Denture Retention/instrumentation*
  18. Khuder T, Yunus N, Sulaiman E, Ibrahim N, Khalid T, Masood M
    J Oral Rehabil, 2017 May;44(5):398-404.
    PMID: 28295492 DOI: 10.1111/joor.12504
    This study aimed to investigate residual ridge resorption (RRR) of anterior and posterior maxillary and mandibular edentulous ridges, in patients treated with mandibular implant overdentures (IOD) and compare with conventional complete denture (CD) wearers, and to determine at each location, the association of RRR with the occlusal forces distribution and other patients' variables. The anterior and posterior RRR of IOD (six males, 17 females) and CD (12 males, 11 females) groups were determined using baseline and follow-up dental panaromic radiographs (DPT) (mean intervals 4 ± 1·8 years). The bone ratios were calculated using proportional area: anatomic to fixed reference areas and mean difference of ratios between the intervals determined RRR. The ridge locations included anterior and posterior maxillary and posterior mandibular arches. The T-Scan III digital occlusal system was used to record anterior and posterior percentage occlusal force (%OF) distributions. There were significant differences in anterior and posterior %OF between treatment groups. Two-way anova showed RRR was significant for arch locations (P = 0·005), treatment group (IOD versus CD) (P = 0·001), however, no significant interaction (P = 0·799). Multivariate regression analyses showed significant association between RRR and %OF at anterior maxilla (P = 0·000) and posterior mandible (P = 0·023) and for treatment groups at posterior maxilla (P = 0·033) and mandibular areas (P = 0·021). Resorption was observed in IOD compared to CD groups, with 8·5% chance of less resorption in former and 7·8% in the latter location. Depending on arch location, ridge resorption at various locations was associated with occlusal force distribution and/or treatment groups (implant prostheses or conventional complete dentures).
    Matched MeSH terms: Denture Retention
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links