Displaying all 3 publications

Abstract:
Sort:
  1. Nayak BS, Ann CY, Azhar AB, Ling ECS, Yen WH, Aithal PA
    Int J Trichology, 2017 Apr-Jun;9(2):58-62.
    PMID: 28839388 DOI: 10.4103/ijt.ijt_76_16
    INTRODUCTION: Scalp care is essential because it determines the health and condition of the hair and prevents the diseases of scalp and hair. The objectives of our study were to correlate race and hair types, to determine the awareness of hair care among Malaysian medical students, and to distinguish the factors that affect the health of hair and scalp.

    METHODOLOGY: It was a cross-sectional study wherein validated questionnaires were given to 240 medical undergraduate students who belonged to three ethnic races of Malaysia, i.e., Chinese, Malay, and Malaysian Indians after their informed consent. The results were then analyzed using percentage statistics.

    RESULTS: Chinese students had comparatively healthier scalp without dandruff. Most Chinese and Indians had silky type of hair while Malay had dry, rough hair. Chinese and Indians colored their hair and used various styling methods; while among the Malays, this percentage was very less. Regarding hair care practices, males used only shampoo and females used shampoo and conditioner for hair wash. Students also faced dietary and examination-related stress.

    CONCLUSION: Results indicate that there exist morphological differences in hair among the studied population. Since most students color their hair and employ various hairstyling methods, they should be educated regarding best hair care practices to improve their scalp hair condition and health.
    Matched MeSH terms: Dandruff
  2. Christapher PV, Parasuraman S, Christina JM, Asmawi MZ, Vikneswaran M
    Pharmacognosy Res, 2015 Jan-Mar;7(1):1-6.
    PMID: 25598627 DOI: 10.4103/0974-8490.147125
    Polygonum minus (Polygonaceae), generally known as 'kesum' in Malaysia is among the most commonly used food additive, flavoring agent and traditionally used to treat stomach and body aches. Raw or cooked leaves of P. minus are used in digestive disorders in the form of a decoction and the oil is used for dandruff. The pharmacological studies on P. minus have demonstrated antioxidant, in vitro LDL oxidation inhibition, antiulcer activity, analgesic activity, anti-inflammatory activity, in vitro antiplatelet aggregation activity, antimicrobial activity, digestive enhancing property and cytotoxic activity. The spectroscopic studies of essential oil of P. minus showed the presence of about 69 compounds, which are responsible for the aroma. The phytochemical studies showed presence of flavonoids and essential oils. This review is an effort to update the botanical, phytochemical, pharmacological and toxicological data of the plant P. minus.
    Matched MeSH terms: Dandruff
  3. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
    Matched MeSH terms: Dandruff/drug therapy*; Dandruff/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links