Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Chua KB, Chua IL, Chua IE, Chong KH, Chua KH
    Malays J Pathol, 2005 Dec;27(2):99-105.
    PMID: 17191392
    A mycological medium was developed for primary isolation and culture of lipophilic yeasts. It was initially based on published information of nutrients and trace components that would promote the growth of these yeasts. It was subsequently modified and adjusted to specifically promote the growth of lipophilic yeasts and simultaneously avoid the luxurious growth of other fungi and bacteria. With this medium, the conventional bacteriological procedures such as microbial streaking for pure culture and anti-microbial sensitivity testing could be carried out for these lipophilic yeasts.
    Matched MeSH terms: Cell Culture Techniques/methods*
  2. Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK
    Appl Microbiol Biotechnol, 2018 Oct;102(19):8229-8259.
    PMID: 30054703 DOI: 10.1007/s00253-018-9232-x
    Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
    Matched MeSH terms: Cell Culture Techniques/methods
  3. Ravanfar SA, Orbovic V, Moradpour M, Abdul Aziz M, Karan R, Wallace S, et al.
    Biotechnol Genet Eng Rev, 2017 Apr;33(1):1-25.
    PMID: 28460558 DOI: 10.1080/02648725.2017.1309821
    Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
    Matched MeSH terms: Cell Culture Techniques/methods*
  4. Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Rahmah N
    Trop Biomed, 2010 Apr;27(1):125-30.
    PMID: 20562822
    In vitro culture of Toxoplasma gondii can provide tachyzoites which are active, viable and with desirable purity. Thus the aim of this study was to optimize the cell culture method for T. gondii propagation to obtain a consistent source of parasites with maximum yield and viability, but minimum host cell contamination for use in production of excretory-secretory antigen. Tachyzoites with seed counts of 1x10(6), 1x10(7) and 1x10(8) harvested from infected mice were added to VERO cells of different degrees of confluence, namely 50%, 85% and 100%, and examined periodically using an inverted microscope. When the maximum release of the tachyzoites was observed from the host cells, the culture supernatant was removed and the tachyzoites harvested. Using a Neubauer chamber, the percentages of viable tachyzoites and host cell contamination were determined using trypan blue stain. Parameters that gave the best yield and purity of viable tachyzoites were found to be as follows: VERO cells at 85% confluence in DMEM medium and inoculum comprising 1x10(7) tachyzoites. After about 3 days post infection, the tachyzoites multiplied 78x, with a yield of ~7.8x10(8) per flask, 99% viability and 3% host cell contamination. This study has successfully optimized the method of propagation of T. gondii tachyzoites in VERO cells which produce parasites with high yield, purity and viability.
    Matched MeSH terms: Cell Culture Techniques/methods*
  5. Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, et al.
    Int J Mol Sci, 2023 Feb 13;24(4).
    PMID: 36835154 DOI: 10.3390/ijms24043745
    Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
    Matched MeSH terms: Cell Culture Techniques/methods
  6. Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, Zainuddin Z, et al.
    Mol Biol Rep, 2023 Nov;50(11):9353-9366.
    PMID: 37819494 DOI: 10.1007/s11033-023-08842-2
    BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming.

    METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants.

    CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.

    Matched MeSH terms: Tissue Culture Techniques/methods
  7. Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, et al.
    Zebrafish, 2014 Oct;11(5):407-20.
    PMID: 24967707 DOI: 10.1089/zeb.2013.0879
    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
    Matched MeSH terms: Cell Culture Techniques/methods*
  8. Yaacob JS, Mahmad N, Mat Taha R, Mohamed N, Mad Yussof AI, Saleh A
    ScientificWorldJournal, 2014;2014:262710.
    PMID: 24977187 DOI: 10.1155/2014/262710
    Various explants (stem, leaf, and root) of Citrus assamensis were cultured on MS media supplemented with various combinations and concentrations (0.5-2.0 mg L(-1)) of NAA and BAP. Optimum shoot and root regeneration were obtained from stem cultures supplemented with 1.5 mg L(-1) NAA and 2.0 mg L(-1) BAP, respectively. Explant type affects the success of tissue culture of this species, whereby stem explants were observed to be the most responsive. Addition of 30 gL(-1) sucrose and pH of 5.8 was most optimum for in vitro regeneration of this species. Photoperiod of 16 hours of light and 8 hours of darkness was most optimum for shoot regeneration, but photoperiod of 24 hours of darkness was beneficial for production of callus. The morphology (macro and micro) and anatomy of in vivo and in vitro/ex vitro Citrus assamensis were also observed to elucidate any irregularities (or somaclonal variation) that may arise due to tissue culture protocols. Several minor micromorphological and anatomical differences were observed, possibly due to stress of tissue culture, but in vitro plantlets are expected to revert back to normal phenotype following full adaptation to the natural environment.
    Matched MeSH terms: Cell Culture Techniques/methods*
  9. Imaizumi Y, Nagao N, Yusoff FM, Taguchi S, Toda T
    Bioresour Technol, 2014 Jun;162:53-9.
    PMID: 24747382 DOI: 10.1016/j.biortech.2014.03.123
    To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.
    Matched MeSH terms: Cell Culture Techniques/methods*
  10. Ataollahi F, Pingguan-Murphy B, Moradi A, Wan Abas WA, Chua KH, Abu Osman NA
    Cytotherapy, 2014 Aug;16(8):1145-52.
    PMID: 24831838 DOI: 10.1016/j.jcyt.2014.01.010
    Numerous protocols for the isolation of bovine aortic endothelial cells have been described in the previous literature. However, these protocols prevent researchers from obtaining the pure population of endothelial cells. Thus, this study aimed to develop a new and economical method for the isolation of pure endothelial cells by introducing a new strategy to the enzymatic digestion method proposed by previous researchers.
    Matched MeSH terms: Cell Culture Techniques/methods*
  11. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2013;2013:689235.
    PMID: 24319380 DOI: 10.1155/2013/689235
    Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
    Matched MeSH terms: Cell Culture Techniques/methods
  12. Yaacob JS, Taha RM, Khorasani Esmaeili A
    ScientificWorldJournal, 2013;2013:686752.
    PMID: 23766703 DOI: 10.1155/2013/686752
    The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09  μm² to 35.66 ± 0.10  μm² and 142.90 ± 0.59  μm² to 165.05 ± 0.58  μm², respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period.
    Matched MeSH terms: Tissue Culture Techniques/methods*
  13. Farshad Ashraf M, Abd Aziz M, Abdul Kadir M, Stanslas J, Farokhian E
    Plant Cell Physiol, 2013 Aug;54(8):1356-64.
    PMID: 23749812 DOI: 10.1093/pcp/pct083
    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
    Matched MeSH terms: Culture Techniques/methods*
  14. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  15. Khan MA, Ngabura M, Choong TS, Masood H, Chuah LA
    Bioresour Technol, 2012 Jan;103(1):35-42.
    PMID: 22055093 DOI: 10.1016/j.biortech.2011.09.065
    Biosorption potential of mustard oil cake (MOC) for Ni(II) from aqueous medium was studied. Spectroscopic studies showed possible involvement of acidic (hydroxyl, carbonyl and carboxyl) groups in biosorption. Optimum biosorption was observed at pH 8. Contact time, reaction temperature, biosorbent dose and adsorbate concentration showed significant influence. Linear and non-linear isotherms comparison suggests applicability of Temkin model at 303 and 313 K and Freundlich model at 323K. Kinetics studies revealed applicability of Pseudo-second-order model. The process was endothermic and spontaneous. Freundlich constant (n) and activation energy (Ea) values confirm physical nature of the process. The breakthrough and exhaustive capacities for 5 mg/L initial Ni(II) concentration were 0.25 and 4.5 mg/g, while for 10 mg/L initial Ni(II) concentration were 4.5 and 9.5 mg/g, respectively. Batch desorption studies showed maximum Ni(II) recovery in acidic medium. Regeneration studies by batch and column process confirmed reutilization of biomass without appreciable loss in biosorption.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  16. Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC
    Hum. Cell, 2010 Nov;23(4):141-51.
    PMID: 21166885 DOI: 10.1111/j.1749-0774.2010.00096.x
    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.
    Matched MeSH terms: Cell Culture Techniques/methods*
  17. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y
    J Biosci Bioeng, 2008 Sep;106(3):231-6.
    PMID: 18929997 DOI: 10.1263/jbb.106.231
    In this study, endoglucanase was produced from oil palm empty fruit bunch (OPEFB) by a locally isolated aerobic bacterium, Bacillus pumilus EB3. The effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the endoglucanase production were studied using carboxymethyl cellulose (CMC) as the carbon source. Endoglucanase from B. pumilus EB3 was maximally secreted at 37 degrees C, initial pH 7.0 with 10 g/l of CMC as carbon source, and 2 g/l of yeast extract as organic nitrogen source. The activity recorded during the fermentation was 0.076 U/ml. The productivity of the enzyme increased twofold when 2 g/l of yeast extract was used as the organic nitrogen supplement as compared to the non-supplemented medium. An interesting finding from this study is that pretreated OPEFB medium showed comparable results to CMC medium in terms of enzyme production with an activity of 0.063 U/ml. As OPEFB is an abundant solid waste at palm oil mills, it has the potential of acting as a substrate in cellulase production.
    Matched MeSH terms: Cell Culture Techniques/methods*
  18. Norazril SA, Aminuddin BS, Norhayati MM, Mazlyzam AL, Fauziah O, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:186-7.
    PMID: 15468880
    Chitosan has similar structure to glycosaminoglycans in the tissue, thus may be a good candidates as tissue engineering scaffold. However, to improve their cell attachment ability, we try to incorporate this natural polymer with collagen by combining it via cross-linking process. In this preliminary study we evaluate the cell attachment ability of chitosan-collagen scaffold versus chitosan scaffold alone. Chitosan and collagen were dissolved in 1% acetic acid and then were frozen for 24 hours before the lyophilizing process. Human skin fibroblasts were seeded into both scaffold and were cultured in F12: DMEM (1:1). Metabolic activity assay were used to evaluate cell attachment ability of scaffold for a period of 1, 3, 7 and 14 days. Scanning electron micrographs shows good cell morphology on chitosan-collagen hybrid scaffold. In conclusion, the incorporation of collagen to chitosan will enhance its cell attachment ability and will be a potential scaffold in tissue engineering.
    Matched MeSH terms: Organ Culture Techniques/methods*
  19. Annuar N, Spier RE
    Med J Malaysia, 2004 May;59 Suppl B:204-5.
    PMID: 15468889
    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
    Matched MeSH terms: Organ Culture Techniques/methods
  20. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Organ Culture Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links