Cryptosporidium, a protozoan parasite, can cause cryptosporidiosis which is a gastrointestinal disease that can infect humans and livestock. Cattle are the most common livestock that can be infected with this protozoan. This study was carried out to determine the prevalence of Cryptosporidium infection in cattle in Kuantan, Pahang, Malaysia and to find out the association between the occurrence of infection and 3 different ages of cattle (calves less than 1 year, yearling, and adult cattle). The samples were processed by using formol-ether concentration technique and stained by modified Ziehl Neelsen. The results showed that 15.9% (24/151) of cattle were positive for Cryptosporidium oocysts. The occurrence of Cryptosporidium in calves less than 1 year was the highest with the percentage of 20.0% (11/55) followed by yearling and adult cattle, with the percentage occurrence of 15.6 % (7/45) and 11.8% (6/51), respectively. There was no significant association between the occurrence and age of cattle and presence of diarrhea. Good management practices and proper hygiene management must be taken in order to reduce the infection. It is highly important to control the infection since infected cattle may serve as potential reservoirs of the infection to other animals and humans, especially animal handlers.
Cryptosporidium fragile sp. n. (Apicomplexa) is described from black-spined toads, Duttaphrynus melanostictus (Schneider) (Amphibia, Anura, Bufonidae) from the Malay Peninsula. The parasitized animals were directly imported from Malaysia and harboured C. fragile at the time of arrival. Oocysts were subspherical to elliptical with irregular contour in optical section, measuring 6.2 (5.5-7.0) x 5.5 (5.0-6.5) microm. Oocyst wall was smooth and colourless in light microscopy. The endogenous development of C. fragile in the stomach of black-spined toad was analysed in detail using light and electron microscopy. Cryptosporidian developmental stages were confined to the surface of gastric epithelial cells. In transmission experiments, C. fragile has not been infective for one fish species, four amphibian species, one species of reptile and SCID mice. Full length small subunit rRNA gene sequence was obtained. Phylogenetic reconstruction revealed distinct status of C. fragile within the clade of species with gastric localisation including Cryptosporidium muris Tyzzer, 1907, Cryptosporidium serpentis Levine, 1980 and Cryptosporidium andersoni Lindsay, Upton, Owens, Morgan, Mead et Blagburn, 2000. Described characteristics differentiate C. fragile from the currently recognized Cryptosporidium species. Our experience with the description of C. fragile has led us to revise the recommended criteria for an introduction of a new Cryptosporidium species name. C. fragile is the first species described and named from an amphibian host. Its prevalence of 83% (15/18) in black-spined toads within the 3 months after importation calls for strict quarantine measures and import regulation for lower vertebrates.
Fifty faecal samples from diarrheic calves between 1 and 6 months old were collected per rectum from 5 farms around Petaling District in Selangor, Malaysia for Cryptosporidium species detection and genotyping investigation. Oocysts were purified using sedimentation and gradient centrifugation, then examined by immunofluorescence assay (IFAT). Genomic DNA was extracted from all samples and nested PCR was performed to amplify the SSU rRNA gene. Eighteen samples (36%) were positive for Cryptosporidium species by PCR. The sequence and phylogenetic analysis of 14 isolates indicated that Cryptosporidium parvum was most common (11 isolates) followed by Cryptosporidium deer-like genotype (3 isolates). The present work reports the first data on Cryptosporidium genotyping from cattle in Malaysia.
Cryptosporidium and Giardia are major causes of diarrhoeal diseases of humans worldwide, and are included in the World Health Organisation's 'Neglected Diseases Initiative'. Cryptosporidium and Giardia occur commonly in Malaysian human and non-human populations, but their impact on disease, morbidity and cost of illness is not known. The commonness of contributions from human (STW effluents, indiscriminate defaecation) and non-human (calving, lambing, muck spreading, slurry spraying, pasturing/grazing of domestic animals, infected wild animals) hosts indicate that many Malaysian environments, particularly water and soil, are sufficiently contaminated to act as potential vehicles for the transmission of disease. To gain insight into the morbidity and mortality caused by human cryptosporidiosis and giardiasis, they should be included into differential diagnoses, and routine laboratory testing should be performed and (as for many infectious diseases) reported to a centralised public health agency. To understand transmission routes and the significance of environmental contamination better will require further multidisciplinary approaches and shared resources, including raising national perceptions of the parasitological quality of drinking water. Here, the detection of Cryptosporidium and Giardia should be an integral part of the water quality requirement. A multidisciplinary approach among public health professionals in the water industry and other relevant health- and environment-associated agencies is also required in order to determine the significance of Cryptosporidium and Giardia contamination of Malaysian drinking water. Lastly, adoption of validated methods to determine the species, genotype and subgenotype of Cryptosporidium and Giardia present in Malaysia will assist in developing effective risk assessment, management and communication models.
Cryptosporidiosis is a particular concern in immunocompromised individuals where symptoms may be severe. The aim of this study was to examine the epidemiological and molecular characteristics of Cryptosporidium infections in HIV/AIDS patients in Malaysia in order to identify risk factors and facilitate control measures. A modified Ziehl-Neelsen acid fast staining method was used to test for the presence of Cryptosporidium oocysts in the stools of 346 HIV/AIDS patients in Malaysia. Standard coproscopical methods were used to identify infections with other protozoan or helminths parasites. To identify the species of Cryptosporidium, DNA was extracted and nested-PCR was used to amplify a portion of the SSU rRNA gene. A total of 43 (12.4%) HIV-infected patients were found to be infected with Cryptosporidium spp. Of the 43 Cryptosporidium-positive HIV patients, 10 (23.3%) also harboured other protozoa, and 15 (34.9%) had both protozoa and helminths. The highest rates of cryptosporidiosis were found in adult males of Malay background, intravenous drug users, and those with low CD4 T cell counts (i.e., < 200 cells/mm3). Most were asymptomatic and had concurrent opportunistic infections mainly with Mycobacterium tuberculosis. DNA sequence analysis of 32 Cryptosporidium isolates identified C. parvum (84.3%), C. hominis (6.3%), C. meleagridis (6.3%), and C. felis (3.1%). The results of the present study revealed a high prevalence of Cryptosporidium infection in hospitalized HIV/AIDS patients. The results also confirmed the potential significance of zoonotic transmission of C. parvum in HIV infected patients, as it was the predominant species found in this study. However, these patients were found to be susceptible to a wide range of Cryptosporidium species. Epidemiological and molecular characterization of Cryptosporidium isolates provides clinicians and researchers with further information regarding the origin of the infection, and may enhance treatment and control strategies.
Computational approaches to predict structure/function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are ineffective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical protein (TU502HP) in the C. hominis genome from the CryptoDB database. A three-dimensional model of the protein was generated using the Iterative Threading ASSEmbly Refinement server through an iterative threading method. Functional annotation and phylogenetic study of TU502HP protein revealed similarity with human transportin 3. The model is further subjected to a virtual screening study form the ZINC database compound library using the Dock Blaster server. A docking study through AutoDock software reported N-(3-chlorobenzyl)ethane-1,2-diamine as the best inhibitor in terms of docking score and binding energy. The reliability of the binding mode of the inhibitor is confirmed by a complex molecular dynamics simulation study using GROMACS software for 10 ns in the water environment. Furthermore, antigenic determinants of the protein were determined with the help of DNASTAR software. Our findings report a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for treatment and prophylaxis of cryptosporidiosis among humans and animals.
Cryptosporidium species are protozoan parasites that infect humans and a wide variety of animals. This study was aimed at identifying Cryptosporidium species and genotypes isolated from avian hosts. A total of 90 samples from 37 different species of birds were collected throughout a 3-month period from April 2008 to June 2008 in the National Zoo of Kuala Lumpur, Malaysia. Prior to molecular characterization, all samples were screened for Cryptosporidium using a modified Ziehl-Neelsen staining technique. Subsequently samples were analysed with nested-PCR targeting the partial SSU rRNA gene. Amplicons were sequenced in both directions and used for phylogenetic analysis using Neighbour-Joining and Maximum Parsimony methods. Although 9 (10%) samples were positive for Cryptosporidium via microscopy, 8 (8.9%) produced amplicons using nested PCR. Phylogenetic trees identified all the isolates as Cryptosporidium parvum. Although C. parvum has not been reported to cause infection in birds, and the role of birds in this study was postulated mainly as mechanical transporters, these present findings highlight the significant public health risk posed by birds that harbour the zoonotic species of Cryptosporidium.
Cryptosporidium is a protozoan parasite of humans and animals and has a worldwide distribution. The parasite has a unique epidemiology in Middle Eastern countries where the IId subtype family of Cryptosporidium parvum dominates. However, there has been no information on Cryptosporidium species in Yemen. Thus, this study was conducted in Yemen to examine the distribution of Cryptosporidium species and subtype families. Fecal samples were collected from 335 patients who attended hospitals in Sana'a city. Cryptosporidium species were determined by PCR and sequence analysis of the 18 s rRNA gene. Cryptosporidium parvum and C. hominis subtypes were identified based on sequence analysis of the 60 kDa glycoprotein (gp60) gene. Out of 335 samples, 33 (9.9%) were positive for Cryptosporidium. Of them, 97% were identified as C. parvum whilst 1 case (3%) was caused by C. hominis. All 7 C. parvum isolates subtyped belonged to the IIaA15G2R1 subtype. The common occurrence of the zoonotic IIa subtype family of C. parvum highlights the potential occurrence of zoonotic transmission of cryptosporidiosis in Yemen. However, this postulation needs confirmation with future molecular epidemiological studies of cryptosporidiosis in both humans and animals in Yemen.