Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Hamad RS, El Sherif F, Al Abdulsalam NK, Abd El-Moaty HI
    Trop Biomed, 2023 Mar 01;40(1):45-54.
    PMID: 37356003 DOI: 10.47665/tb.40.1.010
    Cryptosporidiosis is a serious illness in immunodeficient patients, and there is still no drug that can completely remove the parasite from the host. The present study represents the first report investigating the impact of the active molecule chlorogenic acid (CGA), naturally isolated from Moringa oleifera leaf extract (EMOLE), on immunosuppressed, Cryptosporidium parvum-infected BALB/c mice. Mice were divided into five groups: normal mice, infected immunosuppressed mice, and infected immunosuppressed mice treated with EMOLE, CGA, and nitazoxanide (NTZ) drugs. Parasitological, immunological, and histopathological investigations were recorded besides differences in the mice' body weight. Infected control mice showed elevated levels of oocyst shedding throughout the study. The EMOLE- and CGA-treated groups showed 84.2% and 91.0% reductions in oocyst shedding, respectively, with no significant difference compared to the drug control. The inflammatory markers IFN-γ, IL-6, IL-1β, and TNF-α were significantly higher in the infected control group. Treatment with 300 mg/kg/day of EMOLE or 30 mg/kg/day of CGA significantly downregulated pro-inflammatory cytokine levels compared to the infected group, although they did not change significantly compared to the NTZ-treated group. Histopathology of intestinal sections showed inflammatory and pathological changes in the infected control group. Low-grade tissue changes and an obvious improvement in villi structure were seen in mice treated with CGA. This study highlighted the role of CGA, isolated and purified from EMOLE, as an effective anti-inflammatory agent in eradicating C. parvum infection.
    Matched MeSH terms: Chlorogenic Acid/pharmacology; Chlorogenic Acid/therapeutic use
  2. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Jul 15;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
    Matched MeSH terms: Chlorogenic Acid/metabolism; Chlorogenic Acid/pharmacology
  3. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
    Matched MeSH terms: Chlorogenic Acid
  4. Chan EW, Lim YY, Tan SP
    Pharmacognosy Res, 2011 Jul;3(3):178-84.
    PMID: 22022166 DOI: 10.4103/0974-8490.85003
    Chlorogenic acid (CGA) or 5-caffeoylquinic acid, was found to be the dominant phenolic compound in leaves of Etlingera elatior (Zingiberaceae). The CGA content of E. elatior leaves was significantly higher than flowers of Lonicera japonica (honeysuckle), the commercial source. In this study, a protocol to produce a standardised herbal CGA extract from leaves of E. elatior using column chromatography was developed.
    Matched MeSH terms: Chlorogenic Acid
  5. Munawaroh F, Arfian N, Saputri LAAWS, Kencana SMS, Sari DCR
    Med J Malaysia, 2023 Jul;78(4):476-483.
    PMID: 37518915
    INTRODUCTION: Diabetes Mellitus (DM) is a chronic disease with many complications, one of which is diabetic encephalopathy which is characterised by memory dysfunction. Hyperglycaemia that occurs in DM will activate inflammatory pathways in neurons, including NF-κB pathway. Activation of this pathway produce proinflammatory agents such as MCP-1 and IL-6, which activate glial cells. Activation of glial cells is characterised by Glial Fibrillary Acid Protein (GFAP). Chlorogenic acid (CGA) has been reported to have anti-inflammatory effects and can improve memory function. This research aimed to determine the effect of CGA as anti-inflammation, its effect on memory function, mRNA expression of NF-κB, MCP-1, IL- 6, and GFAP of frontal lobe.

    MATERIALS AND METHODS: A total of 24 male rats were randomly divided into six groups: control, DM 1.5 month (DM1.5), DM 2 months (DM2) and the group with three different doses of CGA 12.5 (CGA1), 25 (CGA2), and 50 (CGA3) mg/KgBW. Frontal lobe tissue is taken for analysis of mRNA expression for NF-κB, MCP-1, IL-6, and GFAP using Reverse Transcriptase PCR (RT-PCR). Samples were also taken for histopathology preparation and stained by immunohistochemistry method using anti-GFAP antibodies to observe glial cell activation in frontal lobe tissue.

    RESULTS: The group that was given CGA at all doses have statistically significant better memory function, i.e. DM2 versus CGA1 (p = 0.036), CGA2 (p = 0.040), and CGA3 (p = 0.021). The result of mRNA expression in NF-κB was lower in the group given CGA, i.e. DM2 compared to CGA2 (p = 0.007). mRNA expression of MCP-1 was significantly lower in all CGA treatment groups compared to the non-CGA group (p = 0.000). IL-6 mRNA expression was lower than the group not given CGA, DM compared to CGA2 (p = 0.028). GFAP mRNA expression was lower than the group given CGA in DM, DM2 group compared to CGA1 (p = 0.04) and CGA3 (p = 0.004).

    CONCLUSION: Administration of CGA can improve memory function at all doses given, and can reduce brain inflammatory activity, especially in the CGA2 group.

    Matched MeSH terms: Chlorogenic Acid/pharmacology; Chlorogenic Acid/therapeutic use
  6. Teoh WY, Tan HP, Ling SK, Abdul Wahab N, Sim KS
    Nat Prod Res, 2016;30(4):448-51.
    PMID: 25738869 DOI: 10.1080/14786419.2015.1017726
    Gynura bicolor (Compositae) is a popular vegetable in Asia and believed to confer a wide range of benefits including anti-cancer. Our previous findings showed that the ethyl acetate extract of G. bicolor possessed cytotoxicity and induced apoptotic and necrotic cell death in human colon carcinoma cells (HCT 116). A combination of column chromatography had been used to purify chemical constituents from the ethyl acetate and water extract of G. bicolor leaves. Eight chemical constituents 5-p-trans-coumaroylquinic acid (I), 4-hydroxybenzoic acid (II), rutin (III), kampferol-3-O-rutinoside (IV), 3,5-dicaffeoylquinic acid (V), kampferol-3-O-glucoside (VI), guanosine (VII) and chlorogenic acid (VIII) were isolated from G. bicolor grown in Malaysia. To our best knowledge, all chemical constituents were isolated for the first time from G. bicolor leaves except rutin (III). 3,5-dicaffeoylquinic acid (V), guanosine (VII) and chlorogenic acid (VIII) demonstrated selective cytotoxicity (selective index>3) against HCT 116 cancer cells compared to CCD-18Co human normal colon cells.
    Matched MeSH terms: Chlorogenic Acid/analogs & derivatives; Chlorogenic Acid/isolation & purification
  7. Yunus J, Salman M, Lintin GBR, Muchtar M, Sari DCR, Arfian N, et al.
    Med J Malaysia, 2020 05;75(Suppl 1):5-9.
    PMID: 32471962
    BACKGROUND: Kidney fibrosis, characterised by tubulointerstitial fibrosis, is a histological landmark of chronic kidney disease. The body attempts to compensate for progressive detrimental process of kidney fibrosis by producing antifibrotic substances, such as bone morphogenetic protein-7 (BMP-7) and hepatocyte growth factor (HGF). Chlorogenic acid is known to have renoprotective and antifibrotic properties. This study aims to evaluate the effect of chlorogenic acid on unilateral ureteral obstruction (UUO)-induced kidney fibrosis mice model.

    METHODS: This study was a quasi-experimental with posttestonly control group design. Twenty-five adult male Swiss Webster mice were randomly divided into five groups: shamoperated group (SO), UUO-control day-7 (U7), UUO-control day-14 (U14), UUO-chlorogenic acid day-7 (UC7), and UUOchlorogenic acid day 14 (UC14). Myofibroblasts were identified by immunohistochemical staining of alphasmooth muscle actin (α-SMA) while collagen fibers were identified by Sirius Red staining. Both data were presented as area fraction. BMP-7 and HGF mRNA expressions were assessed by reverse transcription PCR (RT-PCR). Data were quantified using ImageJ software.

    RESULTS: UUO-control groups (U7 and U14) showed higher α- SMA-immunopositive (6.52±1.33, 18.24±1.39 vs. 0.22±0.01; p<0.05) and Sirius Red-positive area fractions (6.61±0.8, 12.98±2.31 vs. 0.62±0.10; p<0.05), lower BMP-7 (1.02±0.47, 1.18±0.65 vs. 2.09±0.87; p<0.05) and HGF mRNA expressions (1.06±0.31, 0.89±0.14 vs. 1.88±0.81; p<0.05) compared to SO group. UUO-chlorogenic acid groups (UC7 and UC14) showed lower α-SMA-immunopositive (1.24±0.37, 4.58±0.61; p<0.05) and Sirius Red-positive area fractions (4.76±1.03, 3.72±0.54; p<0.05), higher BMP-7 (1.84±0.49, 2.19±0.43; p<0.05) and HGF (1.58±0.38; p>0.05, 1.84±0.42; p<0.05) mRNA expressions compared to UUO-control groups. UUOchlorogenic acid groups showed BMP-7 and HGF mRNA expressions that were not significantly different from the SO group.

    CONCLUSION: Chlorogenic acid administration prevents kidney fibrosis in UUO mice model through modulating antifibrotic pathway.

    Matched MeSH terms: Chlorogenic Acid/administration & dosage; Chlorogenic Acid/pharmacology*
  8. Mediani A, Abas F, Ping TC, Khatib A, Lajis NH
    Plant Foods Hum Nutr, 2012 Dec;67(4):344-50.
    PMID: 23054393 DOI: 10.1007/s11130-012-0317-x
    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/isolation & purification; Chlorogenic Acid/metabolism
  9. Ismail, I., Anuar, M.S., Shamsudin, R.
    MyJurnal
    Green coffee beans are stored for a certain period and under certain conditions until they are finally utilized. The storage period may depend on customer demand while the storage conditions depend on where the coffee beans are stored. Thus, this research emphasizes the physicochemical changes that occur in Liberica coffee beans during storage under the Malaysian
    climate (average temperature and relative humidity of 29.33ºC and 71.75% respectively). The changes in the physico-chemical (coffee size, mass, densities, colour, proximate analysis, sucrose, chlorogenic acid content) and microbiological (yeast and mould count) properties were evaluated during eight months of storage. After the storage, the physical properties of the coffee changed as the coffee beans expanded in size, reduced in mass and density and became brighter in colour. Changes in the chemical properties were also detected where the moisture decreased and the ash content increased. In addition, the sucrose level was found to decrease with a corresponding increase in chlorogenic acid. During storage, the counts of yeast and mould were reduced. Model equations describing the changes in the properties were developed. The overall conclusion was that the coffee beans reduced in quality during storage.
    Matched MeSH terms: Chlorogenic Acid
  10. Prasad N, Yang B, Kong KW, Khoo HE, Sun J, Azlan A, et al.
    PMID: 23710209 DOI: 10.1155/2013/154606
    Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant.
    Matched MeSH terms: Chlorogenic Acid
  11. Karunanidhi A, Thomas R, van Belkum A, Neela V
    Biomed Res Int, 2013;2013:392058.
    PMID: 23509719 DOI: 10.1155/2013/392058
    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16  μg mL(-1) and 16 to 32  μg mL(-1). Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia.
    Matched MeSH terms: Chlorogenic Acid/pharmacology*
  12. Hasyima Omar M, González Barrio R, Pereira-Caro G, Almutairi TM, Crozier A
    Int J Food Sci Nutr, 2021 Jun;72(4):511-517.
    PMID: 33238790 DOI: 10.1080/09637486.2020.1850650
    3',4'-Dihydroxycinnamic acid (aka caffeic acid) is a common dietary component found in a variety of plant-derived food products either in a free form or esterified as in chlorogenic acids such as 5-O-caffeoylquinic acid. The dihydroxycinnamate is produced principally by hydrolysis in the colon of 5-O-caffeoylquinic acid and other caffeoylquinic acid esters, and is catabolised by the resident microbiota prior to absorption. In the present study 3',4'-dihydroxycinnamic acid was incubated in vitro, with or without glucose, under anaerobic conditions with faecal slurries obtained from five volunteers. The main resultant catabolites to accumulate were 3-(3',4'-dihydroxyphenyl)propanoic acid (aka dihydrocaffeic acid), 3-(3'-hydroxyphenyl)propanoic acid and phenylacetic acid. Both the rate of degradation of the hydroxycinnamate substrate and the catabolite profile varied between the faecal samples from the individual volunteers. Overall there was no clear cut effect when glucose was added to incubation medium.
    Matched MeSH terms: Chlorogenic Acid/analogs & derivatives
  13. Sulaiman SF, Moon JK, Shibamoto T
    J Diet Suppl, 2011 Sep;8(3):293-310.
    PMID: 22432728 DOI: 10.3109/19390211.2011.593618
    In order to investigate the role of roasting conditions in antioxidant formation, methanol and hot water extracts from Robusta coffee beans roasted for various lengths of time and at various temperatures were analyzed for total phenolic acid, chlorogenic acid, and caffeine content, as well as for their antioxidant activities using 1,1-diphenyl-2-picryhydrazyl (DPPH), thiobarbituric acid (TBA), and malonaldehyde/gas chromatography (MA/GC) assays. The amount of total phenolics in methanol extracts decreased linearly over the roasting temperature from 63.51 ± 0.77 mg chlorogenic acid equivalent (CAE)/g coffee beans (roasted at 200°C) to 42.56 ± 0.33 mg CAE/g coffee beans (roasted at 240°C). The total chlorogenic acid content decreased when the roasting time was increased from 78.33 ± 1.41 mg/g (green coffee beans) to 4.31 ± 0.23 mg/g (roasted for 16 min at 250°C). All methanol extracts from roasted coffee beans possessed over 90% antioxidant activities in the DPPH assay. The antioxidant activity of methanol extracts ranged from 41.38 ± 1.77% (roasted at 250°C for 10 min) to 98.20 ± 1.49% (roasted at 230°C for 16 min) as tested by the TBA assay. The antioxidant activity of methanol extracts of green coffee beans and roasted coffee beans ranged from 93.01% (green coffee beans) to 98.62 ± 1.32% (roasted at 250°C for 14 min) in the MA/GC assays. All hot water extracts exhibited moderate pro-oxidant activities in TBA and MA/GC assays. The results indicated that roasting conditions of coffee beans play an important role in the formation of antioxidants in brewed coffee, which can be dietary supplements having beneficial effect to human health.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/pharmacology
  14. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/pharmacology
  15. Bullo S, Buskaran K, Baby R, Dorniani D, Fakurazi S, Hussein MZ
    Pharm Res, 2019 Apr 24;36(6):91.
    PMID: 31020429 DOI: 10.1007/s11095-019-2621-8
    BACKGROUND: The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research.

    METHODS: In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors.

    RESULTS: The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells.

    CONCLUSION: The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.

    Matched MeSH terms: Chlorogenic Acid/pharmacology; Chlorogenic Acid/chemistry*
  16. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
    Matched MeSH terms: Chlorogenic Acid/toxicity; Chlorogenic Acid/chemistry*
  17. Ooi KL, Muhammad TS, Tan ML, Sulaiman SF
    J Ethnopharmacol, 2011 Jun 1;135(3):685-95.
    PMID: 21497647 DOI: 10.1016/j.jep.2011.04.001
    The decoction of the whole plant of Elephantopus mollis Kunth. is traditionally consumed to treat various free radical-mediated diseases including cancer and diabetes.
    Matched MeSH terms: Chlorogenic Acid/analogs & derivatives*; Chlorogenic Acid/pharmacology; Chlorogenic Acid/therapeutic use
  18. Shah NN, Rahman RA, Shamsuddin R, Adzahan NM
    J Food Sci Technol, 2015 Aug;52(8):5057-65.
    PMID: 26243926 DOI: 10.1007/s13197-014-1554-9
    The purpose of this study is to investigate the changes occured on phenolic compounds between two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52) post-enzymatic clarification. The changes in polyphenols composition were monitored using High Performance Liquid Chromatography Diode Array Detection and Folin Ciocalteu's method. Clarification treatment of pummelo fruit juice with a commercial pectinase was optimized based on incubation temperature, time and enzyme concentration. Both varieties of pummelo fruit juice were treated with different optimized variables which produced the highest clarities with the least effect to the juice physical quality. Tambun variety was found to have significantly more total phenolic compounds (p <0.05) in comparison to Ledang variety, possibly due to the amount of naringin. Three types of hydroxycinnamic acids (chlorogenic, caffeic and coumaric acid) and three compounds of flavanones (naringin, hesperidin and narirutin) were found in both fruit juices, where naringin and chlorogenic acid were the major contributor to the total phenolic content. Naringin, which gave out bitter aftertaste to the juice, was found to decrease, 1.6 and 0.59 % reduction in Ledang and Tambun respectively, post-enzymatic treatment. The decrease in naringin, albeit nominal, could be a potential benefit to the juice production in reducing the bitterness of the juice. Post-enzymatic analysis furthermore resulted in no significance differences (p <0.05) on the total phenolic compounds of both varieties. This study in summary provides a compositional database for Malaysian pummelo fruit juice of various phenolic compounds, which can provide useful information for evaluating the authenticity and the health benefits from the juice.
    Matched MeSH terms: Chlorogenic Acid
  19. Nor Hafiza Sayuti, ‘Ammar Akram Kamarudin, Nor Asma Ab. Razak, Norazalina Saad, Mohd Sabri Pak Dek, Norhaizan Mohd Esa
    MyJurnal
    Introduction: There are numerous studies on the therapeutic properties of Artocarpus heterophyllus. However, stud- ies on the aqueous extraction of A. heterophyllus leaves are limited. This present study was conducted to optimize the extraction conditions of A. heterophyllus leaves to yield the highest phenolic, flavonoids and antioxidant contents. Methods: Response surface methodology (RSM) was employed to obtain a higher phenolic extraction parameter(s) of A. heterophyllus leaves using Central Composite Design (CCD). The antioxidant activity was then determined via ABTS (2,29-azinobis (3 ethylbenzothiazoline-6-sulfonic acid)) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay and analysis of the individual phenolics was performed by high performance liquid chromatography (HPLC). Results: The optimum extraction conditions with higher phenolics content and antioxidant activity was achieved at 81°C, 100 min and 40 mL/g sample with a good desirability value of 0.87. Under these optimized parameters, total phenolics and flavonoids were 174.48 ± 4.05 mg GAE/g sample and 21.44 ± 0.05 mg RE/g sample, respectively. Meanwhile, antioxidant activity via ABTS and DPPH assays were 90.88% ± 0.09 and 87.22% ± 0.62, respectively. Finally, under optimal extraction conditions revealed 4 compounds identified as chlorogenic acid, quercetin, rutin and kaempferol. Conclusion: The optimisation are promising to improve phenolic yield and antioxidant activity in A. heterophyllus leaves. It also proved that A. heterophyllus leaves can be used as an alternative natural antioxidant especially in medicinal applications since all identified compound possess significant biological activities for human health.
    Matched MeSH terms: Chlorogenic Acid
  20. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
    Matched MeSH terms: Chlorogenic Acid
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links