Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, et al.
    Curr Drug Metab, 2018;19(13):1100-1110.
    PMID: 30039757 DOI: 10.2174/1389200219666180723144850
    BACKGROUND: Essential oils are liquid extracts from aromatic plants, which have numerous applications in multiple industries. There are a variety of methods used for the extraction of essential oils, with each method exhibiting certain advantages and determining the biological and physicochemical properties of the extracted oils. Essential oils from different plant species contain more than 200 constituents which are comprised of volatile and non-volatile components. The application of essential oils as antimicrobial, anticancer, anti-inflammatory and anti-viral agents is due to their effective and efficient properties, inter alia.

    METHOD: Several advanced (supercritical fluid extraction, subcritical extraction liquid, solvent-free microwave extraction) and conventional (hydrodistillation, steam distillation, hydrodiffusion, solvent extraction) methods have been discussed for the extraction of essential oils. Advanced methods are considered as the most promising extraction techniques due to less extraction time, low energy consumption, low solvent used and less carbon dioxide emission.

    CONCLUSION: This manuscript reviewed the major research studies in the field and discussed several research findings on the chemical composition of essential oils, methods of oil extraction, and application of these oils in pharmaceutical and therapeutic fields. These essential oils can be used as anticancer, antimicrobial, antiviral, and as skin permeation enhancer agents.

    Matched MeSH terms: Chemistry Techniques, Analytical
  2. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  3. Briggs MT, Condina MR, Klingler-Hoffmann M, Arentz G, Everest-Dass AV, Kaur G, et al.
    Proteomics Clin Appl, 2019 05;13(3):e1800099.
    PMID: 30367710 DOI: 10.1002/prca.201800099
    Protein glycosylation, particularly N-linked glycosylation, is a complex posttranslational modification (PTM), which plays an important role in protein folding and conformation, regulating protein stability and activity, cell-cell interaction, and cell signaling pathways. This review focuses on analytical techniques, primarily MS-based techniques, to qualitatively and quantitatively assess N-glycosylation while successfully characterizing compositional, structural, and linkage features with high specificity and sensitivity. The analytical techniques explored in this review include LC-ESI-MS/MS and MALDI time-of-flight MS (MALDI-TOF-MS), which have been used to analyze clinical samples, such as serum, plasma, ascites, and tissue. Targeting the aberrant N-glycosylation patterns observed in MALDI-MS imaging (MSI) offers a platform to visualize N-glycans in tissue-specific regions. The studies on the intra-patient (i.e., a comparison of tissue-specific regions from the same patient) and inter-patient (i.e., a comparison of tissue-specific regions between different patients) variation of early- and late-stage ovarian cancer (OC) patients identify specific N-glycan differences that improve understanding of the tumor microenvironment and potentially improve therapeutic strategies for the clinic.
    Matched MeSH terms: Chemistry Techniques, Analytical*
  4. Kashif M, Bakar AA, Arsad N, Shaari S
    Sensors (Basel), 2014 Aug 28;14(9):15914-38.
    PMID: 25171117 DOI: 10.3390/s140915914
    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*
  5. Tarmizi AH, Lin SW, Kuntom A
    J Oleo Sci, 2008;57(5):275-85.
    PMID: 18391476
    Characterisation of fatty acids composition of three palm-based reference materials was carried out through inter-laboratory proficiency tests. Twelve laboratories collaborated in these tests and the fatty acids compositions of palm oil, palm olein and palm stearin were determined by applying the MPOB Test Methods p3.4:2004 and p3.5:2004. Determination of consensus values and their uncertainties were based on the acceptable statistical agreement of results obtained from the collaborating laboratories. The consensus values and uncertainties (%) for each palm oil reference material produced are listed as follows : 0.20% (C12:0), 1.66+/-0.05% (C14:0), 43.39+/-0.39% (C16:0), 0.14+/-0.06% (C16:1), 3.90+/-0.11% (C18:0), 40.95+/-0.23% (C18:1), 9.68+/-0.21% (C18:2), 0.16+/-0.07% (C18:3) and 0.31+/-0.08% (C20:0) for fatty acids composition of palm oil; 0.23+/-0.04% (C12:0), 1.02+/-0.04% (C14:0), 39.66+/-0.19% (C16:0), 0.18+/-0.07% (C16:1), 3.81+/-0.04% (C18:0), 44.01+/-0.08% (C18:1), 10.73+/-0.08% (C18:2), 0.20+/-0.06% (C18:3) and 0.34+/-0.04% (C20:0) for fatty acids composition of palm olein; and 0.20% (C12:0), 1.14+/-0.05% (C14:0), 49.42+/-0.25% (C16:0), 0.16+/-0.08% (C16:1), 4.15+/-0.10% (C18:0), 36.14+/-0.77% (C18:1), 7.95+/-0.29% (C18:2), 0.11+/-0.07% (C18:3) and 0.30+/-0.08% (C20:0) for fatty acids composition of palm stearin.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  6. Tan TC, AlKarkhi AF, Easa AM
    Food Chem, 2012 Oct 15;134(4):2430-6.
    PMID: 23442706 DOI: 10.1016/j.foodchem.2012.04.049
    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  7. Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Madhavi V, Madhavi G
    Curr Drug Discov Technol, 2016;13(4):211-224.
    PMID: 27697028
    Drug discovery is a highly complicated, tedious and potentially rewarding approach associated with great risk. Pharmaceutical companies literally spend millions of dollars to produce a single successful drug. The drug discovery process also need strict compliance to the directions on manufacturing and testing of new drug standards before their release into market. All these regulations created the necessity to develop advanced approaches in drug discovery. The contributions of advanced technologies including high resolution analytical instruments, 3-D biological printing, next-generation sequencing and bioinformatics have made positive impact on drug discovery & development. Fortunately, all these advanced technologies are evolving at the right time when new issues are rising in drug development process. In the present review, we have discussed the role of genomics and advanced analytical techniques in drug discovery. Further, we have also discussed the significant advances in drug discovery as case studies.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*
  8. Ahmad M, Ahmad A, Omar TFT, Mohammad R
    Crit Rev Anal Chem, 2024;54(8):2734-2744.
    PMID: 37052389 DOI: 10.1080/10408347.2023.2199432
    Increasing acidity of seawater caused by increasing anthropogenic carbon dioxide absorbed into the seawater attracted the interest of researchers due to increased concern on the deterioration of marine systems and food supply to humans. Total alkalinity (TA) is one of the important parameters in determining carbonate chemistry and is described as the capacity of the sample to neutralize acids. Over the last two decades, many analytical techniques have been developed to determine TA. This article presents a review of different analytical techniques including titration, colorimetric, spectrophotometric, and potentiometric analyses in measuring TA. Among these analytical techniques, potentiometry analysis, which utilizes electrode systems such as glass electrode and ion-selective electrode used as indicator electrodes, is the most used technique. Important features such as principle, limitations, and challenges of the involved technique are discussed in detail.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods
  9. Wan Ibrahim WA, Hermawan D, Sanagi MM, Aboul-Enein HY
    J Sep Sci, 2009 Feb;32(3):466-71.
    PMID: 19142910 DOI: 10.1002/jssc.200800512
    A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*; Chemistry Techniques, Analytical/methods*
  10. Muniandy S, Qvist R, Zaini A, Chinna K, Ismail IS
    PMID: 16295560
    The concentration of plasma sialic acid was estimated using the modified chemical method and the more sensitive enzymatic method in 20 subjects with impaired glucose tolerance and 20 control subjects. The mean sialic acid concentration values of the control subjects and subjects with impaired glucose tolerance using the enzymatic method were 1.747 +/- 0.047 and 2.583 +/- 0.070 mmole/l and 1.753 +/- 0.067 and 2.591 +/- 1.02 mmole/l for the chemical method. The intra-assay coefficient of variation for the control subjects and for the subjects with impaired glucose tolerance were 1.963% and 1.583%, respectively, for the enzymatic assay and 2.728% and 2.431%, respectively, for the chemical assay. The inter-assay coefficient of variation for the control subjects and for the subjects with impaired glucose tolerance were 2.686% and 2.723% for the enzymatic assay, and 3.819% and 3.95% for the chemical assay. Since the values do not differ significantly, the chemical assay is a cost effective method that can be used in large epidemiological studies.
    Matched MeSH terms: Chemistry Techniques, Analytical/economics; Chemistry Techniques, Analytical/methods*
  11. Baidurah S, Murugan P, Joyyi L, Fukuda J, Yamada M, Sudesh K, et al.
    J Chromatogr A, 2016 Nov 04;1471:186-191.
    PMID: 27769532 DOI: 10.1016/j.chroma.2016.10.019
    Thermally assisted hydrolysis and methylation-gas chromatography (THM-GC) in the presence of an organic alkali was validated for the compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] accumulated in whole bacterial cells. Recombinant Cupriavidus necator Re2058/pCB113 was grown in a batch fermentation with different concentration of palm oil and fructose in order to control the molar fraction of 3HHx in P(3HB-co-3HHx) produced in the cells. Trace amounts (30μg) of freeze-dried cells were directly subjected to THM-GC in the presence of tetramethylammonium hydroxide (TMAH) at 400°C. The obtained chromatograms clearly showed nine characteristic peaks, attributed to the THM products from 3HB and 3HHx units in the polymer chains, without any appreciable interference by the bacterial matrix components. Based on these peak intensities, the copolymer compositions were determined rapidly without using any cumbersome and lengthy sample pretreatment as in conventional GC method. Moreover, the compositions thus obtained were strongly correlated with those by NMR and conventional GC involving solvent extraction.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation; Chemistry Techniques, Analytical/methods*
  12. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Adnan MA
    ScientificWorldJournal, 2014;2014:242658.
    PMID: 24741344 DOI: 10.1155/2014/242658
    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*
  13. Rosli AN, Bakar MA, Manan NS, Woi PM, Lee VS, Zain SM, et al.
    Sensors (Basel), 2013;13(10):13835-60.
    PMID: 24129020 DOI: 10.3390/s131013835
    Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II), Mg(II), Be(II) and H⁺ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H⁺ > Be(II) > Mg(II) > Ca(II). Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II) is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II) compared to Ca(II). Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II) complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*
  14. Yew CW, Kumar SV
    Mol Biol Rep, 2012 Feb;39(2):1783-90.
    PMID: 21625851 DOI: 10.1007/s11033-011-0919-7
    MicroRNAs (miRNAs) are small RNAs (sRNAs) with approximately 21-24 nucleotides in length. They regulate the expression of target genes through the mechanism of RNA silencing. Conventional isolation and cloning of miRNAs methods are usually technical demanding and inefficient. These limitations include the requirement for high amounts of starting total RNA, inefficient ligation of linkers, high amount of PCR artifacts and bias in the formation of short miRNA-concatamers. Here we describe in detail a method that uses 80 μg of total RNA as the starting material. Enhancement of the ligation of sRNAs and linkers with the use of polyethylene glycol (PEG8000) was described. PCR artifacts from the amplification of reverse-transcribed sRNAs were greatly decreased by using lower concentrations of primers and reducing the number of amplification cycles. Large concatamers with up to 1 kb in size with around 20 sRNAs/concatamer were obtained by using an optimized reaction condition. This protocol provide researchers with a rapid, efficient and cost-effective method for the construction of miRNA profiles from plant tissues containing low amounts of total RNA, such as fruit flesh and senescent leaves.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  15. Mehrnoush A, Mustafa S, Sarker MZ, Yazid AM
    Molecules, 2011 Nov 03;16(11):9245-60.
    PMID: 22051935 DOI: 10.3390/molecules16119245
    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper) leaves. The effect of independent variables, namely temperature (42.5,47.5, X₁), mixing time (2-6 min, X₂), buffer content (0-80 mL, X₃) and buffer pH (4.5-10.5, X₄) on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  16. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation; Chemistry Techniques, Analytical/methods*
  17. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Chemistry Techniques, Analytical
  18. Nosrati S, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Sep 15;192(3):1283-90.
    PMID: 21752542 DOI: 10.1016/j.jhazmat.2011.06.037
    This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  19. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
  20. Hui BY, Raoov M, Zain NNM, Mohamad S, Osman H
    Crit Rev Anal Chem, 2017 Sep 03;47(5):454-467.
    PMID: 28453309 DOI: 10.1080/10408347.2017.1320936
    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links