MATERIALS AND METHODS: Two hundred fifty-eight patients with primary liver tumors who underwent FDG-PET before LDLT were enrolled in this retrospective study. Unfavorable tumor histology was defined as primary liver tumor other than a well- or moderately differentiated HCC. Thirteen patients had unfavorable tumor histology, including 2 poorly differentiated HCC, 2 sarcomatoid HCC, 5 combined hepatocellular cholangiocarcinoma, 3 intrahepatic cholangiocarcinoma, and 1 hilar cholangiocarcinoma.
RESULTS: FDG-PET positivity was significantly associated with unfavorable tumor histology (P < 0.001). Both FDG-PET positivity and unfavorable tumor histology were significant independent predictors of tumor recurrence and overall survival. In a subgroup analysis of patients with FDG-PET-positive tumors, unfavorable tumor histology was a significant independent predictor of tumor recurrence and overall survival. High FDG uptake (tumor to non-tumor uptake ratio ≥ 2) was a significant predictor of unfavorable tumor histology. Patients with high FDG uptake and/or unfavorable tumors had significantly higher 3-year cumulative recurrence rate (70.8% versus 26.2%, P = 0.004) and worse 3-year overall survival (34.1% versus 70.8%, P = 0.012) compared to those with low FDG uptake favorable tumors.
CONCLUSIONS: The expression of FDG-PET is highly associated with histology of explanted HCC and predicts the recurrence. FDG-PET-positive tumors with high FDG uptake may be considered contraindication for LDLT due to high recurrence rate except when pathology proves favorable histology.
METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.
RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.
CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
.
OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.
MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.
RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.
CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.