MATERIALS & METHODS: This was a cross-sectional study involving 101 subjects recruited from the National Institute of Forensic Medicine (IPFN) Hospital Kuala Lumpur (HKL) over a period of 15 months, from December 2012 until April 2014. PMCT CS of the coronary arteries was calculated using Agatston-Janowitz score. Histological presence of calcification was observed and the degree of stenosis was calculated using an image analysis technique.
RESULTS: PMCT CS increased with increasing severity of stenosis (p<0.001). PMCT CS showed a positive correlation with the presence of calcification (r=-0.82, p<0.001).
CONCLUSION: Calcium score is strongly associated with coronary artery calcification and the degree of luminal stenosis in post mortem subjects. Thus, PMCT may be useful as a non-invasive tool in diagnosing CAD in the event that an autopsy is not possible.
MATERIALS AND METHODS: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro experiments including crystal violet staining, alkaline phosphatase (ALP) activity, and Van Gieson (VG) staining. Taken together, the efficiency of bone mineralization was examined by using alizarin red s (ARS) staining, Von Kossa staining, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis.
RESULTS: The resulting data revealed that 5α-DHT exhibits promising potential particularly at a dose of 0.1 ng/ml, in promoting the growth of MC3T3-E1 cells compared to the control group (CN). Moreover, a significantly higher ALP activity was evident in the experimental group treated with 5α-DHT compared to the CN group at various time intervals. MC3T3-E1 cells treated with 5α-DHT also expressed a remarkably higher collagen deposition and mineralization (calcium and phosphate contents) compared to the CN group at various time intervals.
CONCLUSION: Conclusively, we suggest that 5α-DHT exhibits outstanding potential of promoting proliferation and differentiation in osteoblasts which could be the in vitro basis for the efficacy of 5α-DHT in the treatment of androgen-deficient male osteoporosis.