Displaying all 6 publications

Abstract:
Sort:
  1. Gény C, Rivière G, Bignon J, Birlirakis N, Guittet E, Awang K, et al.
    J Nat Prod, 2016 Apr 22;79(4):838-44.
    PMID: 27008174 DOI: 10.1021/acs.jnatprod.5b00915
    Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein
  2. Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J
    Cell Death Dis, 2013;4:e697.
    PMID: 23807226 DOI: 10.1038/cddis.2013.219
    Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/genetics; BH3 Interacting Domain Death Agonist Protein/metabolism*
  3. Kua VMD, Rasul A, Sreenivasan S, Rasool B, Younis T, Lai NS
    Pak J Pharm Sci, 2019 Jul;32(4(Supplementary)):1797-1803.
    PMID: 31680075
    Leukemia is a type of blood cancer where abnormal and immature leucocytes are produced in the bone marrow. Methadone hydrochloride is a man-made drug that is commonly used in the maintenance treatment for drug addiction. The objective of this research was to determine the cytotoxic activity and apoptotic effects of methadone hydrochloride treatment towards two leukemia cell lines which are CCRF-CEM and HL-60. CCRF-CEM and HL-60 cells were treated with methadone hydrochloride for 24 and 48 hours to determine the cytotoxic activity. IC50 at 24 hours obtained for CCRF-CEM was 121.6μmol/L while IC50 for HL-60 cells was 97.18μmol/L. Result obtained from DNA fragmentation assay showed no characteristic DNA ladder pattern in CCRF-CEM leukemia cells treated with methadone hydrochloride. Characteristics DNA ladder pattern was observed in methadone hydrochloride treated HL-60 cells. Formation of comets was seen in methadone hydrochloride treated CCRF-CEM and HL-60 cells with varying degree of DNA damage. The comets formed by methadone hydrochloride treated HL-60 cells were more prominent as compared to methadone-treated CCRF-CEM cells. The expression of apoptotic-related proteins in methadone-treated CCRF-CEM and HL-60 cells were checked by incubating the cell lysate with Raybio® Human Apoptosis Antibody Array. Significant alterations in expression level of apoptosis-related proteins in methadone hydrochloride treated CCRF-CEM cells were found involving upregulation of caspase-8 expression and downregulation of survivin expression. Methadone hydrochloride induced apoptosis in HL-60 cells involved upregulation of Bid and caspase-8 expression and downregulation of Bcl-2, p21 and survivin expression.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/metabolism
  4. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/genetics; BH3 Interacting Domain Death Agonist Protein/metabolism
  5. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/metabolism
  6. Wong CC, Sagineedu SR, Sumon SH, Sidik SM, Phillips R, Lajis NH, et al.
    Environ Toxicol Pharmacol, 2014 Sep;38(2):489-501.
    PMID: 25168151 DOI: 10.1016/j.etap.2014.07.016
    Andrographolide (AGP) is the main bioactive constituent isolated from the traditional medicinal, Andrographis paniculata which contributes towards its various biological activities, including anticancer property. In this study, a series of new AGP derivatives were semi-synthesised and screened against the NCI in vitro 60 cell lines. From the screening results, we had identified SRS07 as the most potent AGP derivative, against breast and colon cancer cell lines. Subsequently, SRS07 was tested for its capability to induce cell cycle arrest and apoptosis in MCF-7 and HCT116 cancer cells. SRS07 effectively induced G1 cell cycle arrest in both cell lines and ultimately apoptosis by inducing DNA fragmentation in HCT116 cells. The apoptotic cell death induced by SRS07 was confirmed via FITC Annexin-V double staining. Western blot analysis of SRS07-treated HCT116 cells revealed that the compound induced apoptosis be activating caspase 8 which in turn cleaved Bid to t-Bid to initiate cell death cascade. Prediction of the possible mode of action of SRS07 by utilising NCI COMPARE analysis failed to reveal a distinct mechanism category. Hence, it is speculated that SRS07 possesses novel mechanism of action. In conclusion, SRS07 demonstrated superior in vitro anticancer profiles and emerged as a potential lead anticancer candidate.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links