Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Yap LS, Lee WL, Ting ASY
    Prep Biochem Biotechnol, 2023;53(6):653-671.
    PMID: 36137173 DOI: 10.1080/10826068.2022.2122064
    L-asparaginase is an enzyme commonly used to treat acute lymphoblastic leukemia. Commercialized bacterial L-asparaginase has been reported to cause several life-threatening complications during treatment, hence the need to seek alternative sources of L-asparaginase. In this study, the novelty of upstream and downstream bioprocessing of L-asparaginase from a fungal endophyte, Colletotrichum gloeosporioides, and the cytotoxicity evaluation was demonstrated. Six variables (carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate) known to influence L-asparaginase production were studied using One-Factor-At-A-Time (OFAT) approach, with four significant variables further optimized using Response Surface Methodology (RSM). The crude extract produced using optimized condition was purified, characterized and examined for its anticancer effect. Purification of fungal L-asparaginase was performed via ultrafiltration and size exclusion chromatography, which are less common techniques. The protein profile and monomeric weight of L-asparaginase were determined using SDS-PAGE and Western blot. Cytotoxicity of purified L-asparaginase on leukemic Jurkat E6 and oral carcinoma cells were studied using MTS assay for 24 h and 48 h. OFAT results from optimization showed that glucose and L-asparagine concentrations, incubation period and temperature, were significant factors affecting L-asparaginase production by C. gloeosporioides. RSM analysis further evidence the significant interaction between glucose and L-asparagine concentrations in inducing L-asparaginase production. Purified L-asparaginase was profiled with specific activity of 255.02 IU/mg protein, purification fold of 6.12, and 34.63% of enzyme recovery. SDS and Western blot revealed that the purified L-asparaginase might be a tetramer with monomeric units of 25 kDa. Purified L-asparaginase was discovered to be more efficient against Jurkat leukemic cells than against H103 oral carcinoma cells, as lower IC50 value was observed for Jurkat cell lines (46 .36 ± 1.52 µg/mL for Jurkat and 125.56 ± 7.28 µg/mL for H103). In short, purified L-asparaginase derived from endophytic C. gloeosporioides showed high purity and significant anticancer effect toward cancer cells. This study therefore demonstrated the potential of fungal L-asparaginase as alternative chemotherapy drug in the future.
    Matched MeSH terms: Asparagine
  2. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Asparagine/chemistry
  3. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
    Matched MeSH terms: Asparagine/analysis
  4. Ibeji CU, Salleh NAM, Sum JS, Ch'ng ACW, Lim TS, Choong YS
    Sci Rep, 2020 11 03;10(1):18925.
    PMID: 33144641 DOI: 10.1038/s41598-020-75799-8
    Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)-OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
    Matched MeSH terms: Asparagine/chemistry
  5. Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, et al.
    J Biosci Bioeng, 2020 Jun;129(6):672-678.
    PMID: 32088137 DOI: 10.1016/j.jbiosc.2020.01.007
    l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of 42.0 IU mL-1 and showed no activity toward l-glutamine and d-asparagine. The recombinant l-asparaginase exhibited maximum catalytic activity at pH 8.0 and 40°C. The enzyme was stable in the pH ranging from 6.0 to 9.0. The activity of the recombinant enzyme was substantially enhanced by Ba2+, dithiothreitol, and β-mercaptoethanol. The Km and Vmax values of the l-asparaginase for the l-asparagine were 3.22 mmol L-1 and 1.55 IU μg-1, respectively. Moreover, the recombinant l-asparaginase had the ability to mitigate acrylamide formation in potato chips. Compared with the untreated group, the content of acrylamide in samples treated with the enzyme was effectively decreased by 55.9%. These results indicate that the novel type I l-asparaginase has the potential for application in the food processing industry.
    Matched MeSH terms: Asparagine/metabolism
  6. Batool T, Makky EA, Jalal M, Yusoff MM
    Appl Biochem Biotechnol, 2016 Mar;178(5):900-23.
    PMID: 26547852 DOI: 10.1007/s12010-015-1917-3
    L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.
    Matched MeSH terms: Asparagine
  7. Wong KK, Noor-Arniwati Mat-Daud, Roohaida Othman, Zubir Din, Wan KL, Salmijah Surif
    The cockle, Anadara granosa, was experimentally exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a period of 24 hrs. Significant increase in Cu concentrations in whole tissues and hepatopancreas compared to control animals were observed. In order to study the effect of copper exposure at molecular levels, a subtractive cDNA library was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu. Screening of the subtractive cDNA library using reverse northern analysis resulted in several differentially expressed genes, including one that codes for metallothionein (MT). The complete coding sequence of the MT gene (designated as AnaMT2) reveals an open reading frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed by the deduced amino acid composition. Although showing similarities with other molluscan MTs, AnaMT2 can be distinguished by its lower glycine and higher asparagine and proline content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT not highly expressed under basal conditions.
    Matched MeSH terms: Asparagine
  8. Md Nesran ZN, Shafie NH, Md Tohid SF, Norhaizan ME, Ismail A
    PMID: 32280356 DOI: 10.1155/2020/7958041
    In many studies, green tea epigallocatechin-3-gallate (EGCG) has already shown its therapeutic effects in colorectal cancer cells (CRC). However, its mechanism of actions in CRC is poorly elucidated. Hence, this study attempts to elucidate the mechanism of actions of green tea ECGG via iron chelation activity in CRC. In order to investigate this property, HT-29 cell lines (CRC) were treated with EGCG for 24 h, 48 h, and 72 h. From western blot analysis, EGCG had upregulated transferrin receptor (TfR) protein and downregulated Ferritin-H (FtH) protein indicating that iron chelation activity has occurred in CRC. Meanwhile, the molecular docking study demonstrated that EGCG is able to strongly interact the ferritin protein with a high binding affinity (-7.3 kcal/mol) via strong hydrogen bindings to glutamic acid 64 and lysine 71; two moderate hydrogen bindings to asparagine 74 and a hydrophobic interaction to the hydrophobic pocket of lysine 71. The strong interaction predicted between EGCG to ferritin may lead to inhibition of ferritin by EGCG, thus supporting the downregulation of FtH observed in in vitro studies. Molecular docking study of TfR to EGCG cannot be modulated based on the in vitro results. In conclusion, EGCG possesses iron chelator property in CRC and this potential could be further exploited for CRC treatment.
    Matched MeSH terms: Asparagine
  9. Chow Y, Ting AS
    J Adv Res, 2015 Nov;6(6):869-76.
    PMID: 26644924 DOI: 10.1016/j.jare.2014.07.005
    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL(-1) min(-1). l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.
    Matched MeSH terms: Asparagine
  10. Ayoib A, Gopinath SCB, Zambry NS, Yahya ARM
    J Basic Microbiol, 2024 Apr;64(4):e2300585.
    PMID: 38346247 DOI: 10.1002/jobm.202300585
    This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.
    Matched MeSH terms: Asparagine
  11. Teh BA, Choi SB, Musa N, Ling FL, Cun ST, Salleh AB, et al.
    BMC Struct Biol, 2014;14:7.
    PMID: 24499172 DOI: 10.1186/1472-6807-14-7
    Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.
    Matched MeSH terms: Asparagine/metabolism
  12. Hashim OH, Kobayashi K, Taniguchi N
    Biochem. Int., 1992 Jul;27(3):423-9.
    PMID: 1417879
    In view of the controversy with respect to the interaction of jacalin with human IgA2, a study was undertaken to assess the reactivity of the Artocarpus heterophyllus lectin, as well as the lectin from Artocarpus integer (lectin C), with subclasses of human immunoglobulin A by ELISA. Our data is consistent with the view that Artocarpus lectins have no affinity for the IgA2 immunoglobulins. In further support of the findings, we have established that N-linked oligosaccharide moieties of IgA have no significant bearing in the lectin-immunoglobulin binding. Interaction was also not affected in the presence of 1% (w/v) BSA.
    Matched MeSH terms: Asparagine; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
  13. Tan EH, Yusoff AA, Abdullah JM, Razak SA
    J Pediatr Neurosci, 2012 May;7(2):123-5.
    PMID: 23248692 DOI: 10.4103/1817-1745.102575
    In this report, we describe a 15-year-old Malaysian male patient with a de novo SCN1A mutation who experienced prolonged febrile seizures after his first seizure at 6 months of age. This boy had generalized tonic clonic seizure (GTCS) which occurred with and without fever. Sequencing analysis of voltage-gated sodium channel a1-subunit gene, SCN1A, confirmed a homozygous A to G change at nucleotide 5197 (c.5197A > G) in exon 26 resulting in amino acid substitution of asparagines to aspartate at codon 1733 of sodium channel. The mutation identified in this patient is located in the pore-forming loop of SCN1A and this case report suggests missense mutation in pore-forming loop causes generalized epilepsy with febrile seizure plus (GEFS+) with clinically more severe neurologic phenotype including intellectual disabilities (mental retardation and autism features) and neuropsychiatric disease (anxiety disorder).
    Matched MeSH terms: Asparagine
  14. Abdul-Hamid NA, Abas F, Ismail IS, Shaari K, Lajis NH
    J Food Sci, 2015 Nov;80(11):H2603-11.
    PMID: 26457883 DOI: 10.1111/1750-3841.13084
    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity.
    Matched MeSH terms: Asparagine
  15. Ye M, Lin L, Yang W, Gopinath SCB
    PMID: 33769582 DOI: 10.1002/bab.2152
    This study demonstrated the terminated sialo-sugar chains (Neu5Acα2,6Gal and Neu5Acα2,3Gal) mediated specificity enhancement of influenza virus and chicken red blood cell (RBC) by hemagglutination assay. These glycan chains were immobilized on the gold nanoparticle (GNP) to withhold the higher numbers. With the preliminary optimization, a clear button formation with 0.5% RBC was visualized. On the other hand, intact B/Tokio/53/99 with 750 nM hemagglutinin (HA) displayed a nice hemagglutination. The interference on the specificity of RBC and influenza virus was observed by anti-influenza aptamer at the concentration 31 nM, however, there is no hemagglutination prevention was noticed in the presence of complementary aptamer sequences. Spiking GNP conjugated Neu5Acα2,6Gal or Neu5Acα2,3Gal or a mixture of these two to the reaction promoted the hemagglutination to 63 folds higher with 12 nM virus, whereas under the same condition the heat inactivated viruses were lost the hemagglutination. Neuraminidases from Clostridium perfringens and Arthrobacter ureafaciens at 0.0025 neuraminidase units are able to abolish the hemagglutination. Other enzymes, Glycopeptidase F (Elizabethkingia meningoseptica) and Endoglycosidase H (Streptomyces plicatus) did not show the changes with agglutination. Obviously, sialyl-Gal-terminated glycan conjugated GNP amendment has enhanced the specificity of erythrocyte-influenza virus and able to be controlled by aptamer or neuraminidases. This article is protected by copyright. All rights reserved.
  16. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
    Matched MeSH terms: Asparagine
  17. Chia, Yoke Yin, Ton, So Ha
    Malays J Nutr, 2006;12(1):67-78.
    MyJurnal
    The objective of the study was to quantify and to profile the amino acids content in urine samples. The amino acids content in urine was determined in 162 individuals (62 young non-vegetarians aged 15-45 years, 24 elderly non-vegetarians aged 46-70 years, 40 young vegetarians and 36 elderly vegetarians) by high performance liquid chromatography (HPLC). The most common amino acids detected in the young and elderly individuals on vegetarian and non-vegetarian diets were phenylalanine, threonine, arginine and asparagine, while leucine, aspartic acid and alanine were not found in any urine samples in both groups. Isoleucine was not detected in the urine of vegetarians. The concentrations of the majority of essential amino acids were between 0.10 - 2.00 mgl24hrs except for histidine which had a range of 4.1 - 5.0 mgl24hrs. The concentrations of non-essential amino acids varied. Proline, glycine and tyrosine concentrations were between 0.10 - 1.00 mg/24hrs, while cysteine, glutamine, glutamic acid and cystine concentrations were between 11.0 - 21.0 mg124hrs. Asparagine and hydroxy-proline had a range of 0.10 - 5.00 mg/24hrs, while serine and arginine ranged between 31.0 - 50.0 mg124hrs. Isoleucine and serine were not detected in elderly vegetarians while histidine, glycine, glutamic acid and hydroxy-proline were not detected in elderly non-vegetarians. Isoleucine, glycine and hydroxy proline were detected in young non-vegetarians but not in young vegetarians. The levels of amino acids showed no significant statistical differences between young vegetarians and non-vegetarians as well as between elderly vegetarians and non-vegetarians. Phenylalanine, threonine and trypthophan were commonly detected in the lacto-ovo and lacto vegetarians, while valine, cysteine, arginine and asparagine were commonly detected in vegans. In conclusion, except for isoleucine, general differences were seen in urinary amino acid excretions between vegetarians and non-vegetarians even though the differences were statistically not significant. Therefore lacto-ovo diets could be nutritionally adequate as the nutrients were substituted by dairy or plant products.
    Matched MeSH terms: Asparagine
  18. Daniali G, Jinap S, Hajeb P, Sanny M, Tan CP
    Food Chem, 2016 Dec 01;212:244-9.
    PMID: 27374529 DOI: 10.1016/j.foodchem.2016.05.174
    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g.
    Matched MeSH terms: Asparagine
  19. Rashidah, S., Jinap, S., Nazamid, S., Jamilah, B.
    MyJurnal
    This study was carried out to extract and compare the characteristic ability of globulins from cottonseed, alfalfa seed, pea seed, mung bean and French bean with cocoa seeds to produce cocoa-specific aroma precursors. The extracted globulins were compared through SDS PAGE, amino acid and oligopeptide profiles. A very low recovery was obtained during globulin extraction from different seeds ranging from 0.5% to 2.7%. Cottonseed produced the highest total protein (13.90 mg/g), followed by cocoa seed (11.91 mg/g), whereas alfalfa seed, mung bean, pea seed and French bean produced 7.86, 4.77, 4.59 and 3.89 mg/g respectively. Two distinctive bands of 51.1 and 33.0 kDa were observed for cocoa vicilin-class globulin (VCG) from SDS PAGE. More than three bands were shown for other seed globulins. Comparative HPLC analyses of the obtained peptide mixtures revealed different and complex patterns of predominantly hydrophobic peptides. A similar high content of amides (glutamic acids-glutamine, aspartic acid- asparagine and arginine) and low concentrations of lysine were observed in all seeds globulin.
    Matched MeSH terms: Asparagine
  20. Ruzmi R, Ahmad-Hamdani MS, Mazlan N
    PLoS One, 2020;15(9):e0227397.
    PMID: 32925921 DOI: 10.1371/journal.pone.0227397
    The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.
    Matched MeSH terms: Asparagine/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links