Displaying all 16 publications

Abstract:
Sort:
  1. Gan PT, Lim YY, Ting ASY
    Folia Microbiol (Praha), 2023 Oct;68(5):741-755.
    PMID: 37022636 DOI: 10.1007/s12223-023-01050-2
    The influence of light regulation on the growth and enzyme production of three endolichenic fungal isolates, i.e. Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), and Xylaria venustula (PH22), was determined. The isolates were exposed to blue, red, green, yellow, white fluorescent light (12 h light-12 h dark photoperiod) (test), and 24 h dark (control) conditions. Results revealed that the alternating light-dark conditions resulted in the formation of dark rings in most fungal isolates but was absent in PH22. Red light induced sporulation while yellow light elicited higher biomass in all isolates (0.19 ± 0.01 g, 0.07 ± 0.00 g, and 0.11 ± 0.00 g, for EF13, PH22, and EF5, respectively) as compared to incubation in the dark. Results also showed that blue light induced higher amylase activity in PH22 (15.31 ± 0.45 U/mL) and L-asparaginase activity in all isolates (0.45 ± 0.01 U/mL, 0.55 ± 0.39 U/mL, and 0.38 ± 0.01 U/mL, for EF13, PH22, and EF5, respectively) compared to both control conditions. Green light enhanced the production of xylanase (6.57 ± 0.42 U/mL, 10.64 ± 0.12 U/mL, and 7.55 ± 0.56 U/mL for EF13, PH22, and EF5, respectively) and cellulase (6.49 ± 0.48 U/mL, 9.57 ± 0.25 U/mL, and 7.28 ± 0.63 U/mL, for EF13, PH22, and EF5, respectively). In contrast, red light was the least effective light treatment as production of enzymes was the least, with lower levels of amylase, cellulase, xylanase, and L-asparaginase detected. To conclude, all three endolichenic fungi are light-responsive, with fungal growth regulated with the use of red light and yellow light, and manipulation of enzyme production via blue and green light.
    Matched MeSH terms: Asparaginase*
  2. Yap LS, Lee WL, Ting ASY
    Prep Biochem Biotechnol, 2023;53(6):653-671.
    PMID: 36137173 DOI: 10.1080/10826068.2022.2122064
    L-asparaginase is an enzyme commonly used to treat acute lymphoblastic leukemia. Commercialized bacterial L-asparaginase has been reported to cause several life-threatening complications during treatment, hence the need to seek alternative sources of L-asparaginase. In this study, the novelty of upstream and downstream bioprocessing of L-asparaginase from a fungal endophyte, Colletotrichum gloeosporioides, and the cytotoxicity evaluation was demonstrated. Six variables (carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate) known to influence L-asparaginase production were studied using One-Factor-At-A-Time (OFAT) approach, with four significant variables further optimized using Response Surface Methodology (RSM). The crude extract produced using optimized condition was purified, characterized and examined for its anticancer effect. Purification of fungal L-asparaginase was performed via ultrafiltration and size exclusion chromatography, which are less common techniques. The protein profile and monomeric weight of L-asparaginase were determined using SDS-PAGE and Western blot. Cytotoxicity of purified L-asparaginase on leukemic Jurkat E6 and oral carcinoma cells were studied using MTS assay for 24 h and 48 h. OFAT results from optimization showed that glucose and L-asparagine concentrations, incubation period and temperature, were significant factors affecting L-asparaginase production by C. gloeosporioides. RSM analysis further evidence the significant interaction between glucose and L-asparagine concentrations in inducing L-asparaginase production. Purified L-asparaginase was profiled with specific activity of 255.02 IU/mg protein, purification fold of 6.12, and 34.63% of enzyme recovery. SDS and Western blot revealed that the purified L-asparaginase might be a tetramer with monomeric units of 25 kDa. Purified L-asparaginase was discovered to be more efficient against Jurkat leukemic cells than against H103 oral carcinoma cells, as lower IC50 value was observed for Jurkat cell lines (46 .36 ± 1.52 µg/mL for Jurkat and 125.56 ± 7.28 µg/mL for H103). In short, purified L-asparaginase derived from endophytic C. gloeosporioides showed high purity and significant anticancer effect toward cancer cells. This study therefore demonstrated the potential of fungal L-asparaginase as alternative chemotherapy drug in the future.
    Matched MeSH terms: Asparaginase/chemistry
  3. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
    Matched MeSH terms: Asparaginase/genetics; Asparaginase/metabolism*; Asparaginase/chemistry*
  4. Lau SCD, Loh CK, Alias H
    Front Pediatr, 2021;9:660627.
    PMID: 33968859 DOI: 10.3389/fped.2021.660627
    Asparaginase-induced hypertriglyceridemia can have a spectrum of clinical presentations, from being asymptomatic to having life-threatening thrombosis or hyperviscosity syndrome. At present, there is no recommendation on routine lipid monitoring during asparaginase-containing treatment phase, nor a standardized guideline on its management. Two cases are presented here to illustrate the effects of concurrent infection on asparaginase-induced hypertriglyceridemia in patients with high-risk ALL and the use of SMOFlipid infusion as a treatment option in an acute situation.
    Matched MeSH terms: Asparaginase
  5. Menon, B.S., Mohamed, W.M., Majid, N.A., Ariff, A.R.
    MyJurnal
    We report a case of chemotherapy induced acute pan-creatitis in a child with acute lymphoblastic leukaemia. L-asparaginase is the most likely incriminating drug.
    Matched MeSH terms: Asparaginase
  6. Ismail A, Illias RM
    J Ind Microbiol Biotechnol, 2017 Dec;44(12):1627-1641.
    PMID: 28921081 DOI: 10.1007/s10295-017-1980-6
    The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.
    Matched MeSH terms: Asparaginase/genetics*; Asparaginase/metabolism; Asparaginase/chemistry
  7. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Asparaginase/biosynthesis*; Asparaginase/genetics; Asparaginase/isolation & purification
  8. Chua RW, Song KP, Ting ASY
    Lett Appl Microbiol, 2024 Mar 01;77(3).
    PMID: 37563083 DOI: 10.1093/lambio/ovad096
    This study reports the antioxidant potential and L-asparaginase production of culturable fungal endophytes from Dendrobium orchids in Malaysia. Twenty-nine isolates were screened using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to determine their free radical scavenging activities and antioxidant capacity (IC50 and AEAC). L-asparaginase production of fungal endophytes was detected by the qualitative plate assay, and the enzyme activities estimated via the Nesslerization method. All 29 endophytic isolates exhibited various degrees of radical scavenging activities (35.37%-77.23%), with Fusarium fujikuroi (D1) identified as having the highest antioxidant capacity (IC50 6.097 mg/mL) and the highest AEAC value (11.55  mg/g). For L-asparaginase production, the majority of the isolates (89.66%) showed positive results, especially among the culturable species of Fusarium, Trichoderma, and Daldinia. Most Fusarium spp. were able to produce L-asparaginase (80.77%), but the highest L-asparaginase activity was detected in Daldinia eschscholtzii (D14) with 2.128 units/mL. Results from this study highlighted the potential of endophytic fungi from medicinal orchids (Dendrobium sp.) as natural sources of bioactive compounds to be developed into novel antioxidants and anticancer drugs.
    Matched MeSH terms: Asparaginase
  9. Fadilah SAW, Faridah I, Cheong SK
    Med J Malaysia, 2000 Dec;55(4):513-5.
    PMID: 11221167
    The effect of L-asparaginase on the thyroid gland has not been well documented. We report the first two cases of hyperthyroidism associated with thyroid nodule following L-asparaginase therapy for acute lymphoblastic leukemia (ALL). The thyroid function abnormalities were not severe, short-lived and did not require specific therapy.
    Matched MeSH terms: Asparaginase/adverse effects*; Asparaginase/therapeutic use
  10. Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, et al.
    J Biosci Bioeng, 2020 Jun;129(6):672-678.
    PMID: 32088137 DOI: 10.1016/j.jbiosc.2020.01.007
    l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of 42.0 IU mL-1 and showed no activity toward l-glutamine and d-asparagine. The recombinant l-asparaginase exhibited maximum catalytic activity at pH 8.0 and 40°C. The enzyme was stable in the pH ranging from 6.0 to 9.0. The activity of the recombinant enzyme was substantially enhanced by Ba2+, dithiothreitol, and β-mercaptoethanol. The Km and Vmax values of the l-asparaginase for the l-asparagine were 3.22 mmol L-1 and 1.55 IU μg-1, respectively. Moreover, the recombinant l-asparaginase had the ability to mitigate acrylamide formation in potato chips. Compared with the untreated group, the content of acrylamide in samples treated with the enzyme was effectively decreased by 55.9%. These results indicate that the novel type I l-asparaginase has the potential for application in the food processing industry.
    Matched MeSH terms: Asparaginase/genetics; Asparaginase/metabolism*
  11. Batool T, Makky EA, Jalal M, Yusoff MM
    Appl Biochem Biotechnol, 2016 Mar;178(5):900-23.
    PMID: 26547852 DOI: 10.1007/s12010-015-1917-3
    L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.
    Matched MeSH terms: Asparaginase
  12. Chow Y, Ting AS
    J Adv Res, 2015 Nov;6(6):869-76.
    PMID: 26644924 DOI: 10.1016/j.jare.2014.07.005
    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL(-1) min(-1). l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.
    Matched MeSH terms: Asparaginase
  13. Ismail NF, Hamdan S, Mahadi NM, Murad AM, Rabu A, Bakar FD, et al.
    Biotechnol Lett, 2011 May;33(5):999-1005.
    PMID: 21234789 DOI: 10.1007/s10529-011-0517-8
    L-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS-PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.
    Matched MeSH terms: Asparaginase/genetics*
  14. Omar KZ, Ariffin H, Abdullah WA, Chan LL, Lin HP
    Med. Pediatr. Oncol., 2000 May;34(5):377-8.
    PMID: 10797367
    Matched MeSH terms: Asparaginase/adverse effects*
  15. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
    Matched MeSH terms: Asparaginase
  16. Bosco I, Teh A
    Leukemia, 1995 Jun;9(6):951-4.
    PMID: 7596183
    Reports on the outcome of treatment in ALL in Asian (non-Caucasian) adults have been few, and published results compare very unfavourably with results of treatment from 'Western' centres. Seventy-four newly diagnosed Malaysian patients with ALL between the ages of 15 and 69 were treated from 1986 to 1990. The clinical features and prognostic factors were similar to those reported in 'Western' series. The chemotherapy protocol utilized was adapted from the one used by Hoelzer et al in the multicentre German study. The complete remission rate was 73%. The probability of continuous complete remission at 5 years was 29% with a median duration of remission of 15 months. This compares with Hoelzer's initial results of 77% CR rate and 35% CCR at 5 years. Patients with an initial white cell count of less than 30 x 10(9)/l at presentation were found to have a significantly better disease-free survival than those with a count of more than 30 x 10(9)/l (35 vs 22%, P = 0.026, univariate analysis). There was no difference in leukaemia-free survival according to age, sex, ethnic group, or immunophenotype. These results show that the use of moderately intensive chemotherapy protocols in Asian (non-Caucasian) patients achieves similar results to those used in Caucasians. We also showed that the difficulties in 'curing' approximately 70% of adult patient with ALL are universal.
    Matched MeSH terms: Asparaginase/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links