Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z, et al.
    Ther Drug Monit, 2013 Oct;35(5):624-30.
    PMID: 23942539 DOI: 10.1097/FTD.0b013e318290acd2
    Dihydropyrimidine dehydrogenase (DPD) is a pyrimidine catabolic enzyme involved in the initial and rate-limiting step of the catabolic pathway of toxic metabolites of 5-fluorouracil (5-FU). Several studies have reported that deficiency of DPD and polymorphisms of its gene are related to 5-FU toxicities and death. Association between serum concentration of 5-FU and its related toxicity has also been previously demonstrated. Hence, this study aims to understand the role of DPYD variants in serum level of 5-FU and the risk of developing toxicity to prevent adverse reactions and maximize therapy outcome for personalized medicine.
    Matched MeSH terms: Antimetabolites, Antineoplastic/adverse effects; Antimetabolites, Antineoplastic/blood; Antimetabolites, Antineoplastic/pharmacokinetics*; Antimetabolites, Antineoplastic/therapeutic use*
  2. Mistiran AF, Dzarr AA, Gan SH
    Toxicol. Mech. Methods, 2010 Oct;20(8):472-81.
    PMID: 20626302 DOI: 10.3109/15376516.2010.503246
    This paper describes a new validated high performance liquid chromatography (HPLC) method for the simultaneous determination of two anti-cancer drugs, Arabinoside-C (Ara-C) and doxorubicin hydrochloride (DOX). A simultaneous determination method saves cost and time as both drugs can be injected into a single HPLC system without the need to change or re-equilibrate with a new mobile phase. The objective of the study is to develop a simultaneous determination method of two anti-cancer drugs, Ara-C and DOX. The mobile phase consisted of a mixture (45:55) of acetonitrile:ammonium hydrogen phosphate aqueous solution (0.01 M) at pH 6.2 at a flow rate of 0.3 ml/min, with UV detection at 252 nm. Separation was achieved on a C-18 column (5 µm: 250 mm × 4.6 mm) maintained at 30°C in a column oven. The method was linear between 325 ng/ml and 10 µg/ml for Ara-C and 625 ng/ml and 20 µg/ml for DOX. The limit of detection (LOD) was 20 ng/ml for Ara-C and 60 ng/ml for DOX. The developed HPLC method achieved good precision and accuracy as well as limit of quantitations. The developed and validated method is suitable to be used for routine analysis of Ara-C and DOX.
    Matched MeSH terms: Antimetabolites, Antineoplastic/analysis*
  3. Tan ML, Ooi JP, Ismail N, Moad AI, Muhammad TS
    Pharm Res, 2009 Jul;26(7):1547-60.
    PMID: 19407932 DOI: 10.1007/s11095-009-9895-1
    Apoptosis and autophagic cell deaths are programmed cell deaths and they play essential roles in cell survival, growth and development and tumorigenesis. The huge increase of publications in both apoptosis and autophagic signaling pathways has contributed to the wealth of knowledge in facilitating the understanding of cancer pathogenesis. Deciphering the molecular pathways and molecules involved in these pathways has helped scientists devise and develop targeted strategies against cancer. Various drugs targeting the apoptotic TRAIL, Bcl-2 and proteasome pathways are already in Phase II/III clinical trials. The first mTOR inhibitor, temsirolimus has already been approved by the FDA, USA for the treatment of advanced renal cell carcinoma and more mTOR inhibitors are expected to be in the market in a few years time. Strategizing against aberrant autophagy activities in various cancers by using either pro-autophagics or autophagy inhibitors are currently been investigated. This review aims to discuss the most recent antitumor strategies targeting the apoptosis and autophagy signaling pathways and the latest outcome of clinical trials of the above drugs.
    Matched MeSH terms: Antimetabolites, Antineoplastic/pharmacology*; Antimetabolites, Antineoplastic/therapeutic use
  4. Mozar FS, Chowdhury EH
    Curr Drug Deliv, 2015;12(3):333-41.
    PMID: 25600981
    Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage*; Antimetabolites, Antineoplastic/pharmacology
  5. Karan S, Choudhury H, Chakra BK, Chatterjee TK
    Asian Pac J Cancer Prev, 2019 07 01;20(7):2181-2194.
    PMID: 31350983 DOI: 10.31557/APJCP.2019.20.7.2181
    Controlled release delivery system of chemotherapeutic agents at the site of colon endorses modern drug-entrapped
    delivery tools, which release the entrappedagents at a controlled rate for anextended period providing patient compliance
    and additional protection from the degradinggastric environment. Thus, the present study was aimed to develop
    and optimize a novel polymeric microsphere of 5-fluorouracil (5-FU) using natural gum katira to obtain an optimal
    therapeutic response at the colon. Due course of experimentation, in-vivo safety profile of the gum katira in an animal
    model was established. Modified solvent extraction/evaporation technique wasemployed to encapsulate 5-FU in the
    natural polymeric microsphere and was characterized using in-vitro studies to investigate particle size, morphology,
    encapsulation efficiency and release of the drug from developed formulation. Formulated and optimized polymeric
    microsphere of 5-FU using gum katira polymer own optimal physicochemical characteristics with a fine spherical particle
    with size ranged from 210.37±7.50 to 314.45±7.80 μm.Targeted microsphere exhibited good cytotoxicity and also has
    high drug entrapment efficiency, and satisfactory release pattern of the drug within a time frame of 12 h. Finally, we
    foresee that the optimized polymeric gum katiramicrosphere of 5-FU could be a promising micro-carrier for efficient
    colon drug targeting delivery tool with improved chemotherapeutic efficacy against colon cancer.
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage*; Antimetabolites, Antineoplastic/chemistry
  6. Birma Bwatanglang I, Mohammad F, Yusof NA, Elyani Mohammed N, Abu N, Alitheen NB, et al.
    J Mater Sci Mater Med, 2017 Aug 08;28(9):138.
    PMID: 28791524 DOI: 10.1007/s10856-017-5949-9
    5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage; Antimetabolites, Antineoplastic/therapeutic use
  7. Assayaghi RM, Alabsi AM, Swethadri G, Ali AM
    Asian Pac J Cancer Prev, 2019 Oct 01;20(10):3071-3075.
    PMID: 31653156 DOI: 10.31557/APJCP.2019.20.10.3071
    BACKGROUND: Treatment of cancer with chemo-radiotherapy causes severe side effects due to cytotoxic effects towards normal tissues which often results in morbidity. Therefore, developing anticancer agents which can selectively target the cancer cells and cause less side effects are the main objectives of the new therapeutic strategies for treatment advanced or metastatic cancers. Newcastle disease virus strains AF2240 and V4-UPM were shown to be cytolytic against various cancer cells in-vitro and very effective as antileukemicagents.

    METHODS: 45 rats at 6 weeks of age, were randomly assigned to nine groups with 5 rats in each group, both azoxymethane (AOM) and 5-Fluorouracil (5-FU) were given to rats according to the body weight. NDV virus strains (AF2240 and V4-UPM) doses were determined to rats according to CD50 resulted from MTT assay. After 8 doses of NDV strians and 5-FU, tissue sections preparations and histopathological study of rats' organs were done.

    RESULTS: In this article morphological changes of rats' organs, especially in livers, after treatment with a colon carcinogen (azoxymethane) and Newcastle disease virus strains have been recorded. We observed liver damage caused by AOM evidenced by morphological changes and enzymatic elevation were protected by the oncolytic viruses sections. Also we found that combination treatment NDV with 5-FU had greater antitumor efficacy than treatment with NDV or 5-FU alone.

    CONCLUSION: We noted morphological changes in liver and other rats' organs due to a chemical carcinogen and their protection by NDV AF2240 and NDV V4-UPM seems to be most protective.

    Matched MeSH terms: Antimetabolites, Antineoplastic/toxicity
  8. Zahrina AK, Norsa'adah B, Hassan NB, Norazwany Y, Norhayati I, Roslan MH, et al.
    Asian Pac J Cancer Prev, 2014;15(21):9225-32.
    PMID: 25422205
    Ensuring adherence to chemotherapy is important to prevent disease progression, prolong survival and sustain good quality of life. Capecitabine is a complex chemotherapeutic agent with many side effects that might affect patient adherence to treatment. This cross sectional study aimed to determine adherence to capecitabine and its contributing factors among cancer outpatients in Malaysia. One hundred and thirteen patients on single regime capecitabine were recruited from Hospital Sultan Ismail and Hospital Kuala Lumpur from October 2013 to March 2014. Adherence was determined based on adherence score using validated Medication Compliance Questionnaire. Patient socio-demographics, disease, and treatment characteristics were obtained from medical records. Satisfaction score was measured using the validated Patient Satisfaction with Healthcare questionnaire. The mean adherence score was 96.1% (standard deviation: 3.29%). The significant contributing factors of adherence to capecitabine were Malay ethnicity [β=1.3; 95% confidence interval (CI): 0.21, 2.43; p value=0.020], being female [β=1.8; 95%CI: 0.61, 2.99; p value=0.003]), satisfaction score [β=0.08; 95%CI: 0.06, 1.46; p value=0.035], presence of nausea or vomiting [β=2.3; 95%CI: 1.12, 3.48; p value <0.001] and other side effects [β=1.45; 95%CI: 0.24, 2.65; p value=0.019]. Adherence to capecitabine was generally high in our local population. Attention should be given to non-Malay males and patients having nausea, vomiting or other side effects. Sufficient information, proactive assessment and appropriate management of side effects would improve patient satisfaction and thus create motivation to adhere to treatment plans.
    Matched MeSH terms: Antimetabolites, Antineoplastic/adverse effects; Antimetabolites, Antineoplastic/therapeutic use*
  9. Phua VC, Wong WQ, Tan PL, Bustam AZ, Saad M, Alip A, et al.
    Asian Pac J Cancer Prev, 2015;16(4):1449-53.
    PMID: 25743814
    BACKGROUND: Oral capecitabine is increasingly replacing intravenous 5-fluorouracil in many chemotherapy regimens. However, data on the risk of febrile neutropaenia (FN) and treatment related death (TRD) with the drug remain sparse outside of clinical trial settings despite its widespread usage. This study aimed to determine these rates in a large cohort of patients treated in the University of Malaya Medical Centre (UMMC).

    MATERIALS AND METHODS: We reviewed the clinical notes of all patients prescribed with oral capecitabine chemotherapy for any tumour sites in University Malaya Medical Centre (UMMC) from 1st January 2009 till 31st June 2010. Information collected included patient demographics, histopathological features, treatment received including the different chemotherapy regimens and intent of treatment whether the chemotherapy was given for neoadjuvant, concurrent with radiation, adjuvant or palliative intent. The aim of this study is to establish the pattern of usage, FN and TRD rates with capecitabine in clinical practice outside of clinical trial setting. FN is defined as an oral temperature >38.5°or two consecutive readings of >38.0° for 2 hours and an absolute neutrophil count <0.5 x 109/L, or expected to fall below 0.5 x 109/L (de Naurois et al., 2010). Treatment related death was defined as death occurring during or within 30 days of last chemotherapy treatment.

    RESULTS: Between 1st January 2009 and 30th June 2010, 274 patients were treated with capecitabine chemotherapy in UMMC. The mean age was 58 years (range 22 to 82 years). Capecitabine was used in 14 different tumour sites with the colorectal site predominating with a total of 128 cases (46.7%), followed by breast cancer (35.8%). Capecitabine was most commonly used in the palliative setting accounting for 63.9% of the cases, followed by the adjuvant setting (19.7%). The most common regimen was single agent capecitabine with 129 cases (47.1%). The other common regimens were XELOX (21.5%) and ECX (10.2%). The main result of this study showed an overall FN rate of 2.2% (6/274). The overall TRD rate was 5.1% (14/274). The FN rate for the single agent capecitabine regimen was 1.6% (2/129) and the TRD rate was 5.4% (7/129). All the TRDs were with single agent capecitabine regimen were used for palliative intent.

    CONCLUSIONS: Oral capecitabine is used widely in clinical practice in a myriad of tumour sites and bears a low risk of febrile neutropaenia. However, capecitabine like any other intravenous chemotherapeutic agent carries a significant risk of treatment related death.

    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage; Antimetabolites, Antineoplastic/adverse effects*
  10. Wan Rosalina WR, Teh LK, Mohamad N, Nasir A, Yusoff R, Baba AA, et al.
    J Clin Pharm Ther, 2012 Apr;37(2):237-41.
    PMID: 21545474 DOI: 10.1111/j.1365-2710.2011.01272.x
    Genetic polymorphisms of thiopurine S-methyltransferase (TPMT) and inosine triphosphate pyrophosphohydrolase (ITPA 94C>A) contribute to variable responses, including fatal adverse effects, among subjects treated with 6-mercaptopurine (6-MP). Our objectives were to investigate the distribution of specific TPMT and ITPA genotypes in healthy subjects and patients with acute lymphoblastic leukaemia (ALL) from the three main ethnic groups (Malays, Chinese and Indians) in Malaysia and the association of the polymorphisms with adverse effects of 6-MP.
    Matched MeSH terms: Antimetabolites, Antineoplastic/adverse effects*; Antimetabolites, Antineoplastic/therapeutic use
  11. Kamil M, Haron M, Yosuff N, Khalid I, Azman N
    J Coll Physicians Surg Pak, 2010 Jun;20(6):421-2.
    PMID: 20642979 DOI: 06.2010/JCPSP.421422
    A hospital based cross-sectional retrospective study was conducted to determine the frequency of hand foot syndrome (HFS) with Capecitabine as a single agent and in combination with Oxaliplatin. The study included 43 consecutive cases of colorectal carcinoma and conducted from June till December 2008. Patients on palliative care were excluded. SPSS was used for the application of chi-square test, by keeping the level of significance as p < 0.05. Fifteen (34.9%) patients developed HFS, 10 in the single-agent and 5 in the combination group. No significant association of HFS with either regimens was noted (p=0.876).
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage; Antimetabolites, Antineoplastic/adverse effects*
  12. Ebadi M, Buskaran K, Saifullah B, Fakurazi S, Hussein MZ
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374834 DOI: 10.3390/ijms20153764
    One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg-Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage*; Antimetabolites, Antineoplastic/pharmacology
  13. Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK
    J Colloid Interface Sci, 2016 Nov 01;481:107-16.
    PMID: 27459173 DOI: 10.1016/j.jcis.2016.07.020
    Gemcitabine (GmcH) is an effective anti-cancer agent used in the chemotherapy of lung cancer. However, the clinical applications of GmcH has been impeded primarily due to its low blood residence time, unfavorable pharmacokinetic and pharmacodynamic (PK/PD) profile, and poor penetration in the complex environment of lung cancer cells. Thus, the present study aims to formulate GmcH loaded mannosylated solid lipid nanoparticles (GmcH-SLNs) for improving its drug uptake into the lung cancer cells. GmcH-SLNs were prepared by emulsification and solvent evaporation process, and surface modification was done with mannose using ring opening technique. The cellular toxicity and cell uptake studies were performed in A549 lung adenocarcinoma cell line. The developed nanoformulation appears to be proficient in targeted delivery of GmcH with improved therapeutic effectiveness and enhanced safety.
    Matched MeSH terms: Antimetabolites, Antineoplastic/pharmacokinetics*; Antimetabolites, Antineoplastic/pharmacology
  14. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage; Antimetabolites, Antineoplastic/pharmacology
  15. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Drug Des Devel Ther, 2013;7:1015-26.
    PMID: 24106420 DOI: 10.2147/DDDT.S43035
    BACKGROUND: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs.

    METHODS AND RESULTS: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line.

    CONCLUSION: Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage*; Antimetabolites, Antineoplastic/chemistry
  16. Suthandiram S, Gan GG, Zain SM, Bee PC, Lian LH, Chang KM, et al.
    Pharmacogenomics, 2014 Aug;15(11):1479-94.
    PMID: 25303299 DOI: 10.2217/pgs.14.97
    Pharmacogenetics of methotrexate (MTX) contributes to interindividual differences in toxicity. We aimed to evaluate the impact of SNPs within the MTX pathway genes on MTX-induced toxicity and MTX plasma levels at 48 h following treatment in Asian adults with acute lymphoblastic leukemia or non-Hodgkin lymphoma.
    Matched MeSH terms: Antimetabolites, Antineoplastic/adverse effects*; Antimetabolites, Antineoplastic/blood; Antimetabolites, Antineoplastic/therapeutic use*
  17. Tiash S, Othman I, Rosli R, Chowdhury EH
    Curr Drug Deliv, 2014;11(2):214-22.
    PMID: 24328684
    Most of the classical drugs used today to destroy cancer cells lead to the development of acquired resistance in those cells by limiting cellular entry of the drugs or exporting them out by efflux pumps. As a result, higher doses of drugs are usually required to kill the cancer cells affecting normal cells and causing numerous side effects. Accumulation of the therapeutic level of drugs inside the cancer cells is thus required for an adequate period of time to get drugs' complete therapeutic efficacy minimizing the side effects on normal cells. In order to improve the efficacy of chemotherapeutic drugs, nanoparticles of carbonate apatite and its strontium (Sr(2+))-substituted derivative were used in this study to make complexes with three classical anticancer drugs, methotrexate, cyclophosphamide and 5-flurouracil. The binding affinities of these drugs to apatite were evaluated by absorbance and HPLC analysis and the therapeutic efficacy of drug-apatite complexes was determined by cell viability assay. Carbonate apatite demonstrated significant binding affinity towards methotrexate and cyclophosphamide leading to more cellular toxicity than free drugs in MCF-7 and 4T1 breast cancer cells. Moreover, Sr(2+) substitution in carbonate apatite with resulting tiny particles less than 100 nm in diameter further promoted binding of methotrexate to the nanocarriers indicating that Sr(2+)-substituted apatite nanoparticles have the high potential for loading substantial amount of anti-cancer drugs with eventual more therapeutic effectiveness.
    Matched MeSH terms: Antimetabolites, Antineoplastic/administration & dosage*
  18. Leong CF, Azma RZ, Cheong SK, Salwati S, Sharifah NA
    Malays J Pathol, 2005 Jun;27(1):45-50.
    PMID: 16676693
    A 25-year-old man was referred to Hospital UKM with a 2-week history of fever, productive cough and loss of appetite. Physical examination revealed an ill-looking, tachypnoeic young man. No obvious lymphadenopathy or organomegaly was noted. Examination of the respiratory system revealed right pleural effusion. Full blood picture demonstrated leukocytosis with 90% blasts, and bone marrow examination confirmed the diagnosis of acute myeloid leukemia (AML) French-American-British (FAB) classification of M4 with eosinophilia. His chromosome karyotyping showed complex karyotypic abnormalities. Cytological examination of the pleural fluid demonstrated numerous blast cells indicating leukemic infiltration of the lungs, which is a rare presentation in AML. He was then started on induction chemotherapy with intravenous daunorubicin and cytarabine. In the midst of treatment, he developed an episode of seizure and cerebro-spinal fluid cytology confirmed central nervous system (CNS) leukaemic infiltration. Additional intrathecal methotraxate was given. Repeat bone marrow examination done on day 15 of chemotherapy showed persistence of excess blasts indicating refractory AML. He was then reinduced with high dose cytarabine but to no avail. The disease progressed and he succumbed about 8 weeks after the initial diagnosis was made. We highlight here a case of AML-M4Eo with complex karyoyptic abnormalities presenting with leukaemic infiltration of the lungs and CNS which had imparted a bad prognosis for this subtype of AML, AML-M4Eo.
    Matched MeSH terms: Antimetabolites, Antineoplastic/therapeutic use
  19. Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, et al.
    Lancet, 2019 11 23;394(10212):1915-1928.
    PMID: 31679945 DOI: 10.1016/S0140-6736(19)32591-7
    BACKGROUND: Pembrolizumab is active in head and neck squamous cell carcinoma (HNSCC), with programmed cell death ligand 1 (PD-L1) expression associated with improved response.

    METHODS: KEYNOTE-048 was a randomised, phase 3 study of participants with untreated locally incurable recurrent or metastatic HNSCC done at 200 sites in 37 countries. Participants were stratified by PD-L1 expression, p16 status, and performance status and randomly allocated (1:1:1) to pembrolizumab alone, pembrolizumab plus a platinum and 5-fluorouracil (pembrolizumab with chemotherapy), or cetuximab plus a platinum and 5-fluorouracil (cetuximab with chemotherapy). Investigators and participants were aware of treatment assignment. Investigators, participants, and representatives of the sponsor were masked to the PD-L1 combined positive score (CPS) results; PD-L1 positivity was not required for study entry. The primary endpoints were overall survival (time from randomisation to death from any cause) and progression-free survival (time from randomisation to radiographically confirmed disease progression or death from any cause, whichever came first) in the intention-to-treat population (all participants randomly allocated to a treatment group). There were 14 primary hypotheses: superiority of pembrolizumab alone and of pembrolizumab with chemotherapy versus cetuximab with chemotherapy for overall survival and progression-free survival in the PD-L1 CPS of 20 or more, CPS of 1 or more, and total populations and non-inferiority (non-inferiority margin: 1·2) of pembrolizumab alone and pembrolizumab with chemotherapy versus cetuximab with chemotherapy for overall survival in the total population. The definitive findings for each hypothesis were obtained when statistical testing was completed for that hypothesis; this occurred at the second interim analysis for 11 hypotheses and at final analysis for three hypotheses. Safety was assessed in the as-treated population (all participants who received at least one dose of allocated treatment). This study is registered at ClinicalTrials.gov, number NCT02358031.

    FINDINGS: Between April 20, 2015, and Jan 17, 2017, 882 participants were allocated to receive pembrolizumab alone (n=301), pembrolizumab with chemotherapy (n=281), or cetuximab with chemotherapy (n=300); of these, 754 (85%) had CPS of 1 or more and 381 (43%) had CPS of 20 or more. At the second interim analysis, pembrolizumab alone improved overall survival versus cetuximab with chemotherapy in the CPS of 20 or more population (median 14·9 months vs 10·7 months, hazard ratio [HR] 0·61 [95% CI 0·45-0·83], p=0·0007) and CPS of 1 or more population (12·3 vs 10·3, 0·78 [0·64-0·96], p=0·0086) and was non-inferior in the total population (11·6 vs 10·7, 0·85 [0·71-1·03]). Pembrolizumab with chemotherapy improved overall survival versus cetuximab with chemotherapy in the total population (13·0 months vs 10·7 months, HR 0·77 [95% CI 0·63-0·93], p=0·0034) at the second interim analysis and in the CPS of 20 or more population (14·7 vs 11·0, 0·60 [0·45-0·82], p=0·0004) and CPS of 1 or more population (13·6 vs 10·4, 0·65 [0·53-0·80], p<0·0001) at final analysis. Neither pembrolizumab alone nor pembrolizumab with chemotherapy improved progression-free survival at the second interim analysis. At final analysis, grade 3 or worse all-cause adverse events occurred in 164 (55%) of 300 treated participants in the pembrolizumab alone group, 235 (85%) of 276 in the pembrolizumab with chemotherapy group, and 239 (83%) of 287 in the cetuximab with chemotherapy group. Adverse events led to death in 25 (8%) participants in the pembrolizumab alone group, 32 (12%) in the pembrolizumab with chemotherapy group, and 28 (10%) in the cetuximab with chemotherapy group.

    INTERPRETATION: Based on the observed efficacy and safety, pembrolizumab plus platinum and 5-fluorouracil is an appropriate first-line treatment for recurrent or metastatic HNSCC and pembrolizumab monotherapy is an appropriate first-line treatment for PD-L1-positive recurrent or metastatic HNSCC.

    FUNDING: Merck Sharp & Dohme.

    Matched MeSH terms: Antimetabolites, Antineoplastic/therapeutic use
  20. Ramli N, Lim CH, Rajagopal R, Tan LK, Seow P, Ariffin H
    Pediatr Radiol, 2020 08;50(9):1277-1283.
    PMID: 32591982 DOI: 10.1007/s00247-020-04717-x
    BACKGROUND: Intrathecal and intravenous chemotherapy, specifically methotrexate, might contribute to neural microstructural damage.

    OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.

    MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.

    RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.

    CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.

    Matched MeSH terms: Antimetabolites, Antineoplastic/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links