Displaying all 5 publications

Abstract:
Sort:
  1. Liew MNY, Kua KP, Lee SWH, Wong KK
    Front Immunol, 2023;14:1100263.
    PMID: 37701439 DOI: 10.3389/fimmu.2023.1100263
    INTRODUCTION: The COVID-19 pandemic is a major global public health crisis. More than 2 years into the pandemic, effective therapeutic options remain limited due to rapid viral evolution. Stemming from the emergence of multiple variants, several monoclonal antibodies are no longer suitable for clinical use. This scoping review aimed to summarize the preclinical and clinical evidence for bebtelovimab in treating newly emerging SARS-CoV-2 variants.

    METHODS: We systematically searched five electronic databases (PubMed, CENTRAL, Embase, Global Health, and PsycINFO) from date of inception to September 30, 2022, for studies reporting on the effect of bebtelovimab in SARS-CoV-2 infection, using a combination of search terms around -bebtelovimab‖, -LY-CoV1404‖, -LY3853113‖, and -coronavirus infection‖. All citations were screened independently by two researchers. Data were extracted and thematically analyzed based on study design by adhering to the stipulated scoping review approaches.

    RESULTS: Thirty-nine studies were included, thirty-four non-clinical studies were narratively synthesized, and five clinical studies were meta-analyzed. The non-clinical studies revealed bebtelovimab not only potently neutralized wide-type SARS-CoV-2 and existing variants of concern such as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but also retained appreciable activity against Omicron lineages, including BA.2.75, BA.4, BA.4.6, and BA.5. Unlike other monoclonal antibodies, bebtelovimab was able to bind to epitope of the SARS-CoV-2 S protein by exploiting loop mobility or by minimizing side-chain interactions. Pooled analysis from clinical studies depicted that the rates of hospitalization, ICU admission, and death were similar between bebtelovimab and other COVID-19 therapies. Bebtelovimab was associated with a low incidence of treatment-emergent adverse events.

    CONCLUSION: Preclinical evidence suggests bebtelovimab be a potential treatment for COVID-19 amidst viral evolution. Bebtelovimab has comparable efficacy to other COVID-19 therapies without evident safety concerns.

    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use
  2. Kow CS, Ramachandram DS, Hasan SS
    Immunopharmacol Immunotoxicol, 2022 Feb;44(1):28-34.
    PMID: 34762561 DOI: 10.1080/08923973.2021.1993894
    AIM: Several randomized trials have evaluated the effect of neutralizing monoclonal antibodies on the risk of hospital admission and risk of mortality in patients with COVID-19. We aimed to summarize the overall evidence in the form of a systematic review and meta-analysis.

    METHODS: A systematic literature search with no language restriction was performed in electronic databases and preprint repositories to identify eligible studies published up to 29 June 2021. The outcomes of interest were hospital admission and all-cause mortality. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of neutralizing monoclonal antibodies relative to nonuse of neutralizing monoclonal antibodies, at 95% confidence intervals (CI).

    RESULTS: Our systematic literature search identified nine randomized controlled trials. Three trials had an overall low risk of bias, while four trials had some concerns in the overall risk of bias. The meta-analysis revealed no statistically significant difference in the odds of mortality (pooled OR = 0.69; 95% CI 0.33-1.47), but a statistically significant reduction in the odds of hospital admission (pooled OR = 0.29; 95% CI 0.21-0.42), with the administration of a neutralizing monoclonal antibody among patients with COVID-19, relative to non-administration of a neutralizing monoclonal antibody, at the current sample size.

    CONCLUSION: The reduced risk of hospital admission with neutralizing monoclonal antibodies use suggests that the timing of neutralizing antibodies administration is key in preventing hospital admission and, ultimately, death. Future randomized trials should aim to determine if the clinical outcomes with neutralizing monoclonal antibodies differ based on serostatus.

    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use*
  3. Tan CH, Tan KY, Tan NH
    J Proteomics, 2016 07 20;144:33-8.
    PMID: 27282922 DOI: 10.1016/j.jprot.2016.06.004
    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom.

    SIGNIFICANCE: A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the beaked sea snake (Hydrophis schistosus) and N. scutatus. However, it is surprising to note that bioCSL Sea Snake Antivenom neutralized N. scutatus venom much more effectively compared to the targeted sea snake venom by a marked difference in potency of approximately 6-fold. This phenomenon may be explained by the main difference in the proteomes of the two venoms, where H. schistosus venom is dominated by short-neurotoxins in high abundance - this is a poorly immunogenic toxin group that has been increasingly recognized in the venoms of a few cobras. Further investigations should be directed toward strategies to improve the neutralization of short-neurotoxins, in line with the envisioned production of an effective pan-regional elapid antivenom.

    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use
  4. Singh Y, Fuloria NK, Fuloria S, Subramaniyan V, Meenakshi DU, Chakravarthi S, et al.
    J Med Virol, 2021 Oct;93(10):5726-5728.
    PMID: 34232521 DOI: 10.1002/jmv.27181
    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use*
  5. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Acta Trop, 2012 Jun;122(3):267-75.
    PMID: 22322247 DOI: 10.1016/j.actatropica.2012.01.016
    Envenomation by hump-nosed pit viper (Hypnale hypnale, Hh) in Sri Lanka has caused significant morbidity and mortality, attributed to 35% of total venomous snakebites. In Southwestern India (Kerala), H. hypnale was increasingly identified as a dangerous and common source of envenomation, second to the Russell's viper but ahead of the cobra bites. Unfortunately, there is still no specific antivenom to date. This study aims to investigate the immunological properties of the venom and to assess the feasibility of specific Hh antivenom production as well as the development of a diagnostic assay. Hh venom elicited satisfactory titers of anti-Hh IgG in rabbits after 3rd immunization. The anti-Hh IgG, isolated with caprylic acid precipitation method, was effective in neutralizing the venom lethality (potency=48 LD(50) per ml IgG) as well as its procoagulant, hemorrhagic and necrotic effects, indicating the possibility to produce the specific antivenom using the common immunization regime. Cross-reactivity studies using indirect ELISA showed that anti-Hh IgG cross-reacted extensively with several Asiatic crotalid venoms, particularly that of Calloselasma rhodostoma (73.6%), presumably due to the presence of venom antigens common to both snakes. Levels of immunological cross-reactivity were vastly reduced with double-sandwich ELISA. Further work demonstrated that the assay was able to distinguish and quantify venoms of H. hypnale, Daboia russelii and Echis carinatus sinhaleyus (three common local viperid) used to spike human sera at various concentrations. The assay hence may be a useful investigating tool for diagnosing biting species and studying the time course profile of venom concentrations in blood.
    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links