Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Rafique R, Khan KM, Arshia, Chigurupati S, Wadood A, Rehman AU, et al.
    Bioorg Chem, 2020 01;94:103410.
    PMID: 31732193 DOI: 10.1016/j.bioorg.2019.103410
    Over-expression of α-amylase enzyme causes hyperglycemia which lead to many physiological complications including oxidative stress, one of the most commonly associated problem with diabetes mellitus. Marketed α-amylase inhibitors such as acarbose, voglibose, and miglitol used to treat type-II diabetes mellitus, but also linked to several harmful effects. Therefore, it is essential to explore new and nontoxic antidiabetic agents with additional antioxidant properties. In this connection, a series of new N-sulfonohydrazide substituted indazoles 1-19 were synthesized by multistep reaction scheme and assessed for in vitro α-amylase inhibitory and radical (DPPH and ABTS) scavenging properties. All compounds were fully characterized by different spectroscopic techniques including 1H, 13C NMR, EI-MS, HREI-MS, ESI-MS, and HRESI-MS. Compounds showed promising α-amylase inhibitory activities (IC50 = 1.23 ± 0.06-4.5 ± 0.03 µM) as compared to the standard acarbose (IC50 1.20 ± 0.09 µM). In addition to that all derivatives were found good to moderate scavengers of DPPH (IC50 2.01 ± 0.13-5.3 ± 0.11) and ABTS (IC50 = 2.34 ± 0.07-5.5 ± 0.07 µM) radicals, in comparison with standard ascorbic acid having scavenging activities with IC50 = 1.99 ± 0.09 µM, and IC50 2.03 ± 0.11 µM for DPPH and ABTS radicals. In silico molecular docking study was conducted to rationalize the binding interaction of α-amylase enzyme with ligands. Compounds were observed as mixed type inhibitors in enzyme kinetic characterization.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  2. Raj ST, Puspanadan S, Gan CY, Tan JS
    Int J Biol Macromol, 2024 May;267(Pt 2):131376.
    PMID: 38608981 DOI: 10.1016/j.ijbiomac.2024.131376
    Diabetes is a chronic, metabolic disease characterized by hyperglycemia resulting from either insufficient insulin production or impaired cellular response to insulin. Exopolysaccharides (EPS) produced by Lactobacillus spp. demonstrated promising therapeutic potential in terms of their anti-diabetic properties. Extraction and purification of EPS produced by Lactobacillus acidophilus and Limosilactobacillus reuteri were performed using ethanol precipitation, followed by alcohol/salt based aqueous two-phase system (ATPS). The purification process involved ethanol precipitation followed by an alcohol/salt-based ATPS. The study systematically investigated various purification parameters in ATPS, including ethanol concentration, type and concentration of ionic liquid, type and concentration of salt and pH of salt. Purified EPS contents from L. acidophilus (63.30 μg/mL) and L. reuteri (146.48 μg/mL) were obtained under optimum conditions of ATPS which consisted of 30 % (w/w) ethanol, 25 % (w/w) dipotassium hydrogen phosphate at pH 10 and 2 % (w/w) 1-butyl-3-methylimidazolium octyl sulfate. The extracted EPS content was determined using phenol sulphuric acid method. In α-amylase inhibition tests, the inhibitory rate was found to be 92.52 % (L. reuteri) and 90.64 % (L. acidophilus), while in α-glucosidase inhibition tests, the inhibitory rate was 73.58 % (L. reuteri) and 68.77 % (L. acidophilus), based on the optimized parameters selected in ATPS. These results suggest that the purified EPS derived from the postbiotics of Lactobacillus spp. hold promise as potential antidiabetic agents.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  3. Md Yusoff MH, Shafie MH
    Anal Chim Acta, 2024 Dec 01;1331:343351.
    PMID: 39532430 DOI: 10.1016/j.aca.2024.343351
    BACKGROUND: The extraction of polysaccharides using an acidic extraction media has been extensively reported, highlighting its effectiveness in yielding high-quality polysaccharides. A higher concentration of acidic solution could hydrolyze the structure of polysaccharide, while a low concentration reduces the extraction efficiency. Despite this challenges, deep eutectic solvents (DES) were introduced as an alternative extraction medium due to additional interactions such as inter and intra-molecular interactions, Van de Waals, hydrogen bond, and electrostatic interactions, which could improve the polysaccharide extraction efficiency and biological activities. Furthermore, the extraction conditions such as extraction medium and extraction parameters could affect the properties of polysaccharides as well as influence their structure-activity relationship for biological activities.

    RESULTS: The result showed that the microwave-assisted extraction of Micromelum minutum leaf polysaccharide (MMLP) using DES as an extraction media (MMLP-DES) gave a higher yield (improvement of 101.20 %) than citric acid monohydrate (CAM) (MMLP-CAM) and required a lower percentage of microwave power (19.83 % less) and time (0.78 min less). The properties of MMLPs significantly differ based on their pH, molecular weight, viscosity, degree of esterification and monosaccharide molar ratio which influenced the biological activities. Compared to MMLP-CAM, MMLP-DES had a more branched and less linear structure. The bioactivities study revealed that MMLP-DES exhibited higher antioxidant and anti-α-amylase activities (i.e.

    , DPPH: 74.52 %, FRAP: 2.87 mM FeSO4 and α-amylase inhibition: 86.23 %) compared to MMLP-CAM (i.e.

    , DPPH: 49.33 %, FRAP: 1.49 mM FeSO4, and α-amylase inhibition: 81.76 %). The mechanism and structure-activity relationship of MMLPs on bioactivities were also hypothesized.

    SIGNIFICANCE: Based on our previous study, the citric acid monohydrate-glycerol based DES as an extraction medium has enhanced the extraction yield of polysaccharides from M. minutum. This study highlights the DES combined with microwave-assisted extraction to improve the yield of MMLP and evaluate the biological activities compared to CAM as a classical solvent. In conclusion, the DES showed the advantages for extraction of polysaccharides with desired biological activities.

    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  4. Misbah H, Aziz AA, Aminudin N
    PMID: 23718315 DOI: 10.1186/1472-6882-13-118
    Diabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  5. Ngoh YY, Gan CY
    Food Chem, 2016 Jan 1;190:331-7.
    PMID: 26212978 DOI: 10.1016/j.foodchem.2015.05.120
    Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  6. Hameed S, Kanwal, Seraj F, Rafique R, Chigurupati S, Wadood A, et al.
    Eur J Med Chem, 2019 Dec 01;183:111677.
    PMID: 31514061 DOI: 10.1016/j.ejmech.2019.111677
    Benzotriazoles (4-6) were synthesized which were further reacted with different substituted benzoic acids and phenacyl bromides to synthesize benzotriazole derivatives (7-40). The synthetic compounds (7-40) were characterized via different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C NMR. These molecules were examined for their anti-hyperglycemic potential hence were evaluated for α-glucosidase and α-amylase inhibitory activities. All benzotriazoles displayed moderate to good inhibitory activity in the range of IC50 values of 2.00-5.6 and 2.04-5.72 μM against α-glucosidase and α-amylase enzymes, respectively. The synthetic compounds were divided into two categories "A" and "B", in order to understand the structure-activity relationship. Compounds 25 (IC50 = 2.41 ± 1.31 μM), (IC50 = 2.5 ± 1.21 μM), 36 (IC50 = 2.12 ± 1.35 μM), (IC50 = 2.21 ± 1.08 μM), and 37 (IC50 = 2.00 ± 1.22 μM), (IC50 = 2.04 ± 1.4 μM) with chloro substitution/s at aryl ring were found to be most active against α-glucosidase and α-amylase enzymes. Molecular docking studies on all compounds were performed which revealed that chloro substitutions are playing a pivotal role in the binding interactions. The enzyme inhibition mode was also studied and the kinetic studies revealed that the synthetic molecules have shown competitive mode of inhibition against α-amylase and non-competitive mode of inhibition against α-glucosidase enzyme.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  7. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  8. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI
    Bioorg Chem, 2017 08;73:121-127.
    PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007
    A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  9. Ngoh YY, Gan CY
    Food Chem, 2018 Nov 30;267:124-131.
    PMID: 29934146 DOI: 10.1016/j.foodchem.2017.04.166
    Five Pinto bean peptides with α-amylase and angiotensin converting enzyme (ACE) inhibitory activities were successfully identified using the integrated bioinformatics approach. By using PEAKS studio, 511 peptide sequences were first shortlisted based on their de novo sequence property and average local confidence (ALC) yield of ≥60%. Subsequently, only five peptides were found to have high potential (score ≥0.80) for contributing bioactivy. The important sites which were potentially bound by the peptides: (a) Trp58, Trp59, Tyr 62, Asp96, Arg195, Asp197, Glu233, His299, Asp300 and His305 for α-amylase; (b) His353, Ala354, His383, Glu384, His387, Glu411, Lys511, His513, Tyr520 and Tyr523 for ACE had corresponded to the catalytic and substrate binding sites of the two enzymes. A validation assay was then conducted and IC50 values were determined. The range of the values for α-amylase inhibitory activity was 10.03-23.33mM, whereas the values for ACE inhibitory activity were of 1.52-31.88μM.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  10. Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, et al.
    Eur J Med Chem, 2018 Nov 05;159:47-58.
    PMID: 30268823 DOI: 10.1016/j.ejmech.2018.09.052
    Acarbose and voglibose are well-known α-amylase inhibitors used for the management of type-II diabetes mellitus. Unfortunately, these well-known and clinically used inhibitors are also associated with several adverse effects. Therefore, there is still need to develop the safer therapy. Despite of a broad spectrum of biological significances of pyrazolone, it is infrequently evaluated for α-amylase inhibition. Current study deals with the synthesis and biological screening of aryl and arylidene substituted pyrazolones 1-18 for their potential α-amylase inhibitory activity. Structures of synthetic derivatives 1-18 were identified by different spectroscopic techniques. All compounds 1-18 (IC50 = 1.61 ± 0.16 μM to 2.38 ± 0.09 μM) exhibited significant to moderate inhibitory potential when compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). A number of derivatives including 8-12 (IC50 = 1.68 ± 0.1 μM to 1.97 ± 0.07 μM) and 14-16 (IC50 = 1.61 ± 0.16 μM to 1.93 ± 0.07 μM) were found to be significantly active. Limited SAR suggested that different substitutions on compounds do not have any significant effect on the inhibitory potential. Compounds were found to be mixed-type inhibitors revealed by kinetic studies. However, in silico study was identified a number of key features participating in the interaction with the binding site of α-amylase enzyme.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  11. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al.
    PMID: 23039079 DOI: 10.1186/1472-6882-12-176
    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  12. Ali H, Houghton PJ, Soumyanath A
    J Ethnopharmacol, 2006 Oct 11;107(3):449-55.
    PMID: 16678367
    Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  13. Rahim F, Tariq S, Taha M, Ullah H, Zaman K, Uddin I, et al.
    Bioorg Chem, 2019 11;92:103284.
    PMID: 31546207 DOI: 10.1016/j.bioorg.2019.103284
    New triazinoindole bearing thiazole/oxazole analogues (1-21) were synthesized and characterized through spectroscopic techniques such as HREI-MS, 1H and 13C NMR. The configuration of compound 2i and 2k was confirmed through NOESY. All analogues were evaluated against α-amylase inhibitory potential. Among the synthesized analogues, compound 1h, 1i, 1j, 2a and 2f having IC50 values 1.80 ± 0.20, 1.90 ± 0.30, 1.2 ± 0.30, 1.2 ± 0.01 and 1.30 ± 0.20 μM respectively, showed excellent α-amylase inhibitory potential when compared with acarbose as standard (IC50 = 0.91 ± 0.20 µM). All other analogues showed good to moderate inhibitory potential. Structural activity relationship (SAR) has been established and binding interactions were confirmed through docking studies.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  14. Tajudeen Bale A, Mohammed Khan K, Salar U, Chigurupati S, Fasina T, Ali F, et al.
    Bioorg Chem, 2018 09;79:179-189.
    PMID: 29763804 DOI: 10.1016/j.bioorg.2018.05.003
    Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05-2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  15. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan CY, Maqsood S
    J Dairy Sci, 2021 Feb;104(2):1364-1377.
    PMID: 33309363 DOI: 10.3168/jds.2020-19271
    This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  16. Yeye EO, Kanwal, Mohammed Khan K, Chigurupati S, Wadood A, Ur Rehman A, et al.
    Bioorg Med Chem, 2020 06 01;28(11):115467.
    PMID: 32327353 DOI: 10.1016/j.bmc.2020.115467
    Thirty-three 4-amino-1,2,4-triazole derivatives 1-33 were synthesized by reacting 4-amino-1,2,4-triazole with a variety of benzaldehydes. The synthetic molecules were characterized via1H NMR and EI-MS spectroscopic techniques and evaluated for their anti-hyperglycemic potential. Compounds 1-33 exhibited good to moderate in vitro α-amylase and α-glucosidase inhibitory activities in the range of IC50 values 2.01 ± 0.03-6.44 ± 0.16 and 2.09 ± 0.08-6.54 ± 0.10 µM as compared to the standard acarbose (IC50 = 1.92 ± 0.17 µM) and (IC50 = 1.99 ± 0.07 µM), respectively. The limited structure-activity relationship suggested that different substitutions on aryl part of the synthetic compounds are responsible for variable activity. Kinetic study predicted that compounds 1-33 followed mixed and non-competitive type of inhibitions against α-amylase and α-glucosidase enzymes, respectively. In silico studies revealed that both triazole and aryl ring along with different substitutions were playing an important role in the binding interactions of inhibitors within the enzyme pocket. The synthetic molecules were found to have dual inhibitory potential against both enzymes thus they may serve as lead candidates for the drug development and research in the future studies.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  17. Salahuddin MAH, Ismail A, Kassim NK, Hamid M, Ali MSM
    Food Chem, 2020 Nov 30;331:127240.
    PMID: 32585546 DOI: 10.1016/j.foodchem.2020.127240
    The present study focused on the phytochemical profiling along with evaluation of in vitro antioxidant, α-glucosidase and α-amylase inhibitory activities of various crudes and fractions obtained from Lepisanthes fruticosa (Roxb) Leenh fruit. Ethanolic seed crude extract exhibited the strongest radical scavenging, β-carotene bleaching activity, α-glucosidase inhibition and the highest total phenolic content (TPC). Column chromatography afforded various fractions with fraction M4 being the most potent due to the strongest radical scavenging, β-carotene bleaching, α-glucosidase inhibition and greatest amount of TPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of ethanolic seed crude extract and fraction M4 showed the presence of various phytochemicals with antioxidant and antidiabetic properties, which include mostly flavonoids and tannins. The results may suggest that the ethanolic crude seed extract and its fraction could be an excellent source of bioactive phytochemicals with antioxidant and antidiabetic potential.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors
  18. Abu Bakar AR, Manaharan T, Merican AF, Mohamad SB
    Nat Prod Res, 2018 Feb;32(4):473-476.
    PMID: 28391727 DOI: 10.1080/14786419.2017.1312393
    Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p 
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  19. Taha M, Imran S, Ismail NH, Selvaraj M, Rahim F, Chigurupati S, et al.
    Bioorg Chem, 2017 10;74:1-9.
    PMID: 28719801 DOI: 10.1016/j.bioorg.2017.07.001
    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.
    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
  20. Salar U, Khan KM, Chigurupati S, Syed S, Vijayabalan S, Wadood A, et al.
    Med Chem, 2019;15(1):87-101.
    PMID: 30179139 DOI: 10.2174/1573406414666180903162243
    BACKGROUND: Despite many side effects associated, there are many drugs which are being clinically used for the treatment of type-II diabetes mellitus (DM). In this scenario, there is still need to develop new therapeutic agents with more efficacy and less side effects. By keeping in mind the diverse spectrum of biological potential associated with coumarin and thiazole, a hybrid class based on these two heterocycles was synthesized.

    METHOD: Hydrazinyl thiazole substituted coumarins 4-20 were synthesized via two step reaction. First step was the acid catalyzed reaction of 3-formyl/acetyl coumarin derivatives with thiosemicarbazide to form thiosemicarbazone intermediates 1-3, followed by the reaction with different phenacyl bromides to afford products 4-20. All the synthetic analogs 4-20 were characterized by different spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemical assignment of the iminic double bond was carried out by the NOESY experiments. Elemental analysis was found in agreement with the calculated values.

    RESULTS: Compounds 4-20 were screened for α-amylase inhibitory activity and showed good activity in the range of IC50 = 1.829 ± 0.102-3.37 ± 0.17 µM as compared to standard acarbose (IC50 = 1.819 ± 0.19 µM). Compounds were also investigated for their DPPH and ABTS radical scavenging activities and displayed good radical scavenging potential. In addition to that molecular modelling study was conducted on all compounds to investigate the interaction details of compounds 4- 20 (ligands) with active site (receptor) of enzyme.

    CONCLUSION: The newly identified hybrid class may serve as potential lead candidates for the management of diabetes mellitus.

    Matched MeSH terms: alpha-Amylases/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links