Displaying all 7 publications

Abstract:
Sort:
  1. Rafiqul IS, Sakinah AM
    Appl Biochem Biotechnol, 2015 Jan;175(1):387-99.
    PMID: 25300602 DOI: 10.1007/s12010-014-1269-4
    Xylose reductase (XR) is an intracellular enzyme, which catalyzes xylose to xylitol conversion in the microbes. It has potential biotechnological applications in the manufacture of various commercially important specialty bioproducts including xylitol. This study aimed to prepare XR from adapted strain of Candida tropicalis and to characterize it. The XR was isolated from adapted C. tropicalis, cultivated on Meranti wood sawdust hemicellulosic hydrolysate (MWSHH)-based medium, via ultrasonication, and was characterized based on enzyme activity, stability, and kinetic parameters. It was specific to NADPH with an activity of 11.16 U/mL. The enzyme was stable at pH 5-7 and temperature of 25-40 °C for 24 h and retained above 95 % of its original activity after 4 months of storage at -80 °C. The K m of XR for xylose and NADPH were 81.78 mM and 7.29 μM while the V max for them were 178.57 and 12.5 μM/min, respectively. The high V max and low K m values of XR for xylose reflect a highly productive reaction among XR and xylose. MWSHH can be a promising xylose source for XR preparation from yeast.
    Matched MeSH terms: Aldehyde Reductase/genetics; Aldehyde Reductase/isolation & purification; Aldehyde Reductase/chemistry*
  2. Shehzad MT, Imran A, Njateng GSS, Hameed A, Islam M, Al-Rashida M, et al.
    Bioorg Chem, 2019 06;87:857-866.
    PMID: 30551808 DOI: 10.1016/j.bioorg.2018.12.006
    Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).
    Matched MeSH terms: Aldehyde Reductase/antagonists & inhibitors*; Aldehyde Reductase/metabolism; Aldehyde Reductase/chemistry
  3. Rafiqul IS, Sakinah AM, Zularisam AW
    Biotechnol Lett, 2015 Jan;37(1):191-6.
    PMID: 25214231 DOI: 10.1007/s10529-014-1672-5
    Xylose reductase (XR) is an oxidoreductase having potential applications in the production of various specialty products, mainly xylitol. It is important to screen for compounds that can decrease XR activity and consequently can decrease xylitol production. We have identified the byproducts in the hemicellulosic hydrolysate that inhibit XR from Candida tropicalis and measured their effects. XR inhibitory activities of byproducts, glucose, acetic acid, arabinose, lignin-degradation products (LDPs), furfural and hydroxymethylfurfural (HMF), were evaluated by measuring the MIC and IC50 values. XR activity was 11.2 U/ml. Acetic acid, LDPs, furfural and HMF significantly inhibited XR with IC50 values of 11, 6.4, 2.3 and 0.4 g/l, respectively. This is the first report on the inhibitory activities of several byproducts for XR.
    Matched MeSH terms: Aldehyde Reductase/antagonists & inhibitors*; Aldehyde Reductase/metabolism*
  4. Rafiqul IS, Sakinah AM, Zularisam AW
    Appl Biochem Biotechnol, 2015 Jun;176(4):1071-83.
    PMID: 25904039 DOI: 10.1007/s12010-015-1630-2
    Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2-18 h), temperature (20-70 °C), pH (4.0-9.0), NADPH (1.17-5.32 g/L), and enzyme concentration (2-6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.
    Matched MeSH terms: Aldehyde Reductase/isolation & purification; Aldehyde Reductase/chemistry*
  5. Rafiqul ISM, Mimi Sakinah AM, Zularisam AW
    Prep Biochem Biotechnol, 2021;51(10):1060-1070.
    PMID: 33724897 DOI: 10.1080/10826068.2021.1897840
    Enzymatic production of bioxylitol from lignocellulosic biomass (LCB) provides a promising alternative to both chemical and fermentative routes. This study aimed to assess the impacts of catalytic variables on bioxylitol production from wood sawdust using xylose reductase (XR) enzyme and to optimize the bioprocess. Enzyme-based xylitol production was carried out in batch cultivation under various experimental conditions to obtain maximum xylitol yield and productivity. The response surface methodology (RSM) was followed to fine-tune the most significant variables such as reaction time, temperature, and pH, which influence the synthesis of bioxylitol from sawdust hydrolysate and to optimize them. The optimum time, temperature, and pH became were 12.25 h, 35 °C, and 6.5, respectively, with initial xylose 18.8 g/L, NADPH 2.83 g/L, XR 0.027 U/mg, and agitation 100 rpm. The maximum xylitol production was attained at 16.28 g/L with a yield and productivity of 86.6% (w/w) and 1.33 g/L·h, respectively. Optimization of catalytic parameters using sequential strategies resulted in 1.55-fold improvement in overall xylitol production. This study explores a novel strategy for using sawdust hemicellulose in bioxylitol production by enzyme technology.
    Matched MeSH terms: Aldehyde Reductase/metabolism*
  6. Shehzad MT, Hameed A, Al-Rashida M, Imran A, Uroos M, Asari A, et al.
    Bioorg Chem, 2019 11;92:103244.
    PMID: 31541804 DOI: 10.1016/j.bioorg.2019.103244
    The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.
    Matched MeSH terms: Aldehyde Reductase/antagonists & inhibitors*
  7. Mustapha Umar Imam, Sasikala M. Chinnappan, Maznah Ismail
    Sains Malaysiana, 2017;46:589-595.
    There is growing interest in the use of plant bioresources for managing type 2 diabetes. In this study, Rhodamnia cinerea, which is used traditionally to manage diseases in Malaysia, was explored for its antidiabetic effects. Type 2 diabetic rats were managed for 4 weeks using aqueous extract of R. cinerea or quercetin. Weights and fasting glucose were measured weekly, while serum lipid profiles, insulin, antioxidant status, urea, creatinine and liver enzymes were assayed at the end. Sorbitol contents, antioxidant capacities and aldose reductase activities of the kidney, lens and sciatic nerve were also assessed. The results showed that the aqueous extract of R. Cinerea mainly contained Myricitrin and it reduced glycemia (p>0.05), lipid profiles (p<0.05), F2-isoprostanes (p<0.05) and overall metabolic condition of type 2 diabetic rats. R. cinerea also attenuated sorbitol contents of the nerve (p<0.05) and kidney (p<0.05), partly through regulating the activity of aldose reductase (p<0.05 for nerve) and sorbitol dehydrogenase (p<0.05 for kidney) in comparison with diabetic untreated group. Quercetin is a known aldose reductase inhibitor and can improve several metabolic indices related to Type 2 diabetes. In this study, the results of R. cinerea were comparable to or better than those of quercetin, suggesting that R. cinerea extract can be a good candidate for managing Type 2 diabetes and its complications related to sorbitol accumulation.
    Matched MeSH terms: Aldehyde Reductase
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links