Displaying all 6 publications

Abstract:
Sort:
  1. Lee J, Lim S, Lee K, Guo X, Kamath R, Yamato H, et al.
    Int J Hyg Environ Health, 2010 Sep;213(5):348-51.
    PMID: 20542729 DOI: 10.1016/j.ijheh.2010.05.007
    Exposure to secondhand smoke (SHS) is a major threat to public health. Asian countries having the highest smoking prevalence are seriously affected by SHS. The objective of the study was to measure SHS levels in hospitality venues in seven Asian countries and to compare the SHS exposure to the levels in Western countries. The study was carried out in four types of related hospitality venues (restaurant, café, bar/club and entertainment) in China, India, Japan, Korea, Malaysia, Pakistan and Sri Lanka. Real-time measurement of particulate matter of <2.5microm aerodynamic diameter (PM(2.5)) was made during business hour using a handheld laser operated monitor. A total of 168 venues were measured in seven countries. The average indoor PM(2.5) level was 137microg/m(3), ranging from 46microg/m(3) in Malaysia to 207microg/m(3) in India. Bar/club had the highest PM(2.5) level of 191microg/m(3) and restaurants had the lowest PM(2.5) level of 92microg/m(3). The average indoor PM(2.5) level in smoking venues was 156micro/m(3), which was 3.6 times higher than non-smoking venues (43microg/m(3)). Indoor PM(2.5) levels were significantly associated with country, type of venue, smoking density and air exchange rate (p<0.05). In the seven Asian countries, PM(2.5) levels were high due to SHS in public places. The current levels are comparable to the levels in Western countries before the adoption of smoke-free policy. Since Asian country has high prevalence of SHS in public places, there is an urgent need for comprehensive smoke-free regulation in Asian countries.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data*
  2. Latif MT, Baharudin NH, Velayutham P, Awang N, Hamdan H, Mohamad R, et al.
    Environ Monit Assess, 2011 Oct;181(1-4):479-89.
    PMID: 21181256 DOI: 10.1007/s10661-010-1843-3
    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data*
  3. Mohd Isa KN, Hashim Z, Jalaludin J, Lung Than LT, Hashim JH
    PMID: 32731346 DOI: 10.3390/ijerph17155413
    BACKGROUND: To explore the inflammation phenotypes following indoor pollutants exposure based on marker expression on eosinophils and neutrophils with the application of chemometric analysis approaches.

    METHODS: A cross-sectional study was undertaken among secondary school students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia. The survey was completed by 96 students at the age of 14 by using the International Study of Asthma and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS) questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick test and sputum induction were performed for all students. Induced sputum samples were analysed for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured inside the classrooms.

    RESULTS: Chemometric and regression results have clustered the expression of CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile, for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a model prediction accuracy of 72.92% and 71.88%, respectively.

    CONCLUSION: The findings indicated that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils, following the activation mechanisms that led to the inflammatory reactions.

    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data*
  4. Lim FL, Hashim Z, Md Said S, Than LT, Hashim JH, Norbäck D
    Sci Total Environ, 2015 Dec 1;536:353-61.
    PMID: 26225741 DOI: 10.1016/j.scitotenv.2015.06.137
    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data
  5. Abdul Rahman HI, Shah SA, Alias H, Ibrahim HM
    Asian Pac J Cancer Prev, 2008 Oct-Dec;9(4):649-52.
    PMID: 19256754
    BACKGROUND: In Malaysia, acute leukemia is the most common cancer among children below the age of 15. A case-control study was here conducted for cases from the Klang Valley, Malaysia, who received treatment at the National University of Malaysia Hospital (HUKM) and Kuala Lumpur General Hospital (GHKL). The main objective was to determine any association with environmental factors.

    METHODS: Case subjects were children aged below 15 years and diagnosed with acute leukemia in HUKM and GHKL between January 1, 2001 and May 30, 2007. Control subjects were children aged below 15 years who were diagnosed with any non-cancerous acute illnesses in these hospitals. A total of 128 case subjects and 128 control subjects were enrolled in this study. The information was collected using a structured questionnaire and a global positioning system (GPS) device. All factors were analyzed using unmatched logistic regression.

    RESULTS: The analysis showed that the occurrence of acute leukemia among children was strongly determined by the following factors: family income (odds ratio (OR) 0.19, 95% confidence interval (CI): 0.09-0.42), father with higher social contact (OR 7.61, 95% CI: 3.78-15.4), number of elder siblings (OR 0.36, 95% CI: 0.18-0.77), father who smokes (OR 2.78, 95% CI: 1.49-5.16), and the distance of the house from a power line (OR 2.30, 95% CI: 1.18-4.49).

    CONCLUSIONS: Some socioeconomic, demographic, and environmental factors are strong predictors of the occurrence of acute leukemia among children in Klang Valley, Malaysia. In terms of environmental factors, it is recommended that future housing areas should be developed at least 200 m away from power lines.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data*
  6. Nazariah SS, Juliana J, Abdah MA
    Glob J Health Sci, 2013 Jul;5(4):93-105.
    PMID: 23777726 DOI: 10.5539/gjhs.v5n4p93
    In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links