Displaying all 8 publications

Abstract:
Sort:
  1. Mohamed RM, Kassim AH, Anda M, Dallas S
    Environ Monit Assess, 2013 Oct;185(10):8473-88.
    PMID: 23657733 DOI: 10.1007/s10661-013-3189-0
    The option of reusing greywater is proving to be increasingly attractive to address the water shortage issue in many arid and semiarid countries. Greywater represents a constant resource, since an approximately constant amount of greywater is generated from kitchen, laundries, bathroom in every household daily, independent of the weather. However, the use of greywater for irrigation in particular for household gardening may pose major hazards that have not been studied thoroughly. In this study, a 1-year monitoring was conducted in four selected households in Perth, Western Australia. The aim of the monitoring works is to investigate the variability in the greywater flow and quality, and to understand its impact in the surrounding environments. Case studies were selected based on different family structure including number, ages of the occupants, and greywater system they used. Samples of greywater effluent (showers, laundries, bathtub, and sinks), leachate, soil, and plants at each case study were collected between October 2008 and December 2009 which covered the high (spring/summer) and low (autumn/winter) production of greywater. Physical and chemical tests were based on the literature and expected components of laundry and bathroom greywater particularly on greywater components likely to have detrimental impacts on soils, plants, and other water bodies. Monitoring results showed the greywater quality values for BOD, TSS, and pH which sometimes fell outside the range as stipulated in the guidelines. The soil analyses results showed that salinity, SAR, and the organic content of the soil increased as a function of time and affected the plant growth. Nutrient leaching or losses from soil irrigated with greywater shows the movement of nutrients and the sole impact from greywater in uncontrolled plots in case studies is difficult to predicted due to the influence of land dynamics and activities. Investigative and research monitoring was used to understand greywater irrigation in households. Greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater. Investigative and research monitoring was indicated that greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater.
    Matched MeSH terms: Agricultural Irrigation/methods*
  2. Nasser SM, Khandaker MU, Bradley DA, Isinkaye MO
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):422-425.
    PMID: 31038706 DOI: 10.1093/rpd/ncz088
    The present study concerns measurement of the radon concentration in drinking and irrigation waters obtained from the eastern part of Oman, in particular in regard to water quality assessment of the region. The samples were collected from different places covering most types of water sources in the region. A passive and time-integrated track etch detector (LR-115 type II) combined with a high-resolution optical microscope has been used to obtain the radon concentration in the studied samples. Values of dissolved radon in water varied among the water sources; the highest concentration of radon was found to be 363 Bq m-3 in a drinking water sample while well water used for irrigation showed the lowest value, at 140 Bq m-3. Measured data for all water sources are below the permissible limit of 11.1 kBq m-3 recommended by the US-EPA. Annual effective doses for the studied samples were in the range 0.38-0.99 μSv y-1 which is significantly less than the action level recommended by the WHO (0.1 mSv y-1), indicating that the water sources in the Jalan BBH region of Oman are safe to use. The obtained data may serve as a reference for any future radiological study of the waterbody of this region.
    Matched MeSH terms: Agricultural Irrigation/methods*
  3. Taweesak V, Lee Abdullah T, Hassan SA, Kamarulzaman NH, Wan Yusoff WA
    ScientificWorldJournal, 2014;2014:254867.
    PMID: 25478586 DOI: 10.1155/2014/254867
    Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium "Reagan White") were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm(3). Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm(3) substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm(3) substrate were significantly higher than those grown in 73 cm(3) substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.
    Matched MeSH terms: Agricultural Irrigation
  4. Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K
    Int J Mol Sci, 2021 Aug 21;22(16).
    PMID: 34445742 DOI: 10.3390/ijms22169036
    Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
    Matched MeSH terms: Agricultural Irrigation
  5. Sher A, Arfat MY, Ul-Allah S, Sattar A, Ijaz M, Manaf A, et al.
    PLoS One, 2021;16(12):e0260673.
    PMID: 34932582 DOI: 10.1371/journal.pone.0260673
    Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.
    Matched MeSH terms: Agricultural Irrigation/methods
  6. Al-Dulaimi RI, Ismail N, Ibrahim MH
    Ann Agric Environ Med, 2014;21(1):42-8.
    PMID: 24847548
    Water is one of the most important precious resources found on the earth, and are most often affected by anthropogenic activities and by industry. Pollution caused by human beings and industries is a serious concern throughout the world. Population growth, massive urbanization, rapid rate of industrialization and modern techniques in agriculture have accelerated water pollution and led to the gradual deterioration of its quality. A large quantity of waste water disposed of at sea or on land has caused environmental problems which have led to environmental pollution, economic losses and chemical risks caused by the wastewater, and its impact on agriculture. However, waste water which contain nutrients and organic matter has possible advantages for agricultural purposes. Therefore, the presented study was undertaken to assess the impact of Dairy Effluent (treated and untreated waste water) on seed germination, seedling growth, dry matter production and the biochemical parameters of lady's fingers (Abelmoschus esculentus L.).
    Matched MeSH terms: Agricultural Irrigation
  7. Abakpa GO, Umoh VJ, Kamaruzaman S, Ibekwe M
    J Sci Food Agric, 2018 Jan;98(1):80-86.
    PMID: 28543177 DOI: 10.1002/jsfa.8441
    BACKGROUND: Some routes of transmission of Escherichia coli O157:H7 to fresh produce include contaminated irrigation water and manure polluted soils. The aim of the present study was to determine the genetic relationships of E. coli O157:H7 isolated from some produce growing region in Nigeria using enterobacterial repetitive intergenic consensus (ERIC) DNA fingerprinting analysis. A total of 440 samples comprising leafy greens, irrigation water, manure and soil were obtained from vegetable producing regions in Kano and Plateau States, Nigeria. Genes coding for the quinolone resistance-determinant (gyrA) and plasmid (pCT) coding for multidrug resistance (MDR) were determined using polymerase chain reaction (PCR) in 16 isolates that showed MDR.

    RESULTS: Cluster analysis of the ERIC-PCR profiles based on band sizes revealed six main clusters from the sixteen isolates analysed. The largest cluster (cluster 3) grouped isolates from vegetables and manure at a similarity coefficient of 0.72.

    CONCLUSION: The present study provides data that support the potential transmission of resistant strains of E. coli O157:H7 from vegetables and environmental sources to humans with potential public health implications, especially in developing countries. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Agricultural Irrigation
  8. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Agricultural Irrigation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links