Displaying all 3 publications

Abstract:
Sort:
  1. Saifur RG, Dieng H, Hassan AA, Satho T, Miake F, Boots M, et al.
    J Am Mosq Control Assoc, 2010 Dec;26(4):373-80.
    PMID: 21290932
    Moisture plays a major role in the dynamics of mosquito populations, especially those breeding in container habitats. Despite this importance, the role of moisture conditions as they affect oviposition and egg development in Aedes vectors remains largely unexplored. We investigated the effect of exposing gravid female Aedes albopictus mosquitoes and their eggs to different moisture levels (MLs) for various periods on oviposition and hatching. Overall, high-moisture substrates (HMSs; 66% and 72%) provided better environments for egg laying. The timing of initial egg laying was far longer at the lowest substrate moisture level (LSML, 25% and 41.2%) than at HMSs. The numbers of eggs laid were much lower in the drier environments. At LSMLs, gravid females retained increasing numbers of mature eggs until death, and egg retention decreased gradually with increasing ML. The HMSs also provided better environments for larval eclosion. The numbers of eggs hatched were lower at the LSML than the HSML environment. No egg hatching occurred after 1 h exposure to moisture. However, egg hatching occurred by installment, with spontaneous hatching (SH) increasing gradually with increasing ML. High-moisture conditions combined with long exposure (30 h and 48 h) favored SH. These results suggest that Ae. albopictus females can respond to better moisture conditions for increased success of embryonation and larval eclosion. This information may be useful in the colonization of floodwater Aedes species.
    Matched MeSH terms: Aedes/embryology
  2. Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G
    Sci Rep, 2017 03 16;7:43618.
    PMID: 28300076 DOI: 10.1038/srep43618
    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.
    Matched MeSH terms: Aedes/embryology
  3. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
    Matched MeSH terms: Aedes/embryology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links