Displaying all 3 publications

Abstract:
Sort:
  1. Parvaresh Rizi E, Teo Y, Leow MK, Venkataraman K, Khoo EY, Yeo CR, et al.
    J Clin Endocrinol Metab, 2015 11;100(11):4249-56.
    PMID: 26308293 DOI: 10.1210/jc.2015-2639
    CONTEXT: Among Asian ethnic groups, Chinese or Malays are more insulin sensitive than South Asians, in particular in lean individuals. We have further reported that body fat partitioning did not explain this ethnic difference in insulin sensitivity.

    OBJECTIVE: We examined whether adipocytokines might explain the ethnic differences in the relationship between obesity and insulin resistance among the three major ethnic groups in Singapore.

    DESIGN AND PARTICIPANTS: This was a cross-sectional study of 101 Chinese, 82 Malays, and 81 South Asian men. Insulin sensitivity index (ISI) was measured using hyperinsulinemic euglycemic clamp. Visceral (VAT) and subcutaneous adipose tissue (SAT) volumes were quantified using magnetic resonance imaging.

    MAIN OUTCOME MEASURES: Plasma total and high-molecular-weight adiponectin, leptin, visfatin, apelin, IL-6, fibroblast growth factor 21 (FGF21), retinol binding protein-4 (RBP 4), and resistin were measured using enzyme-linked immunoassays.

    RESULTS: Principle component (PC) analysis on the adipocytokines identified three PCs, which explained 49.5% of the total variance. Adiponectin loaded negatively, and leptin and FGF21 loaded positively onto PC1. Visfatin, resistin, and apelin all loaded positively onto PC2. IL-6 loaded positively and RBP-4 negatively onto PC3. Only PC1 was negatively associated with ISI in all ethnic groups. In the path analysis, SAT and VAT were negatively associated with ISI in Chinese and Malays without significant mediatory role of PC1. In South Asians, the relationship between VAT and ISI was mediated partly through PC1, whereas the relationship between SAT and ISI was mediated mainly through PC1.

    CONCLUSIONS: The relationships between abdominal obesity, adipocytokines and insulin sensitivity differ between ethnic groups. Adiponectin, leptin, and FGF21 play a mediating role in the relationship between abdominal adiposity and insulin resistance in South Asians, but not in Malays or Chinese.

    Matched MeSH terms: Adipose Tissue/physiology
  2. Jaganathan R, Ravindran R, Dhanasekaran S
    Can J Diabetes, 2018 Aug;42(4):446-456.e1.
    PMID: 29229313 DOI: 10.1016/j.jcjd.2017.10.040
    Adipose tissue is an enormously active endocrine organ, secreting various hormones, such as adiponectin, leptin, resistin and visfatin, together with classical cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). All these adipocytokines play significant roles in the regulation of energy metabolism, glucose and lipid metabolism, reproduction, cardiovascular function and immunity. Adipocytokines are significantly regulated by nutritional status and can directly influence other organ systems, including brain, liver and skeletal muscle. Adiponectin plays a key role as an anti-inflammatory hormone. Upregulated expression of resistin, vaspin, apelin and TNF-α plays a significant role in induction of insulin resistance linked with obesity and type 2 diabetes. Ghrelin, the circulating peptide, has been found to stimulate appetite and regulate energy balance. Thus, it can be considered 1 of the candidate genes for obesity and type 2 diabetes. Omentin is a novel adipokine produced by visceral adipose tissue. Circulating levels of omentin are decreased in insulin-resistant states, for example, in obesity and diabetes. IL-6 plays a vital role in regulating the accumulation of lipids intramyocardially. Based on the biologic relevance of these adipocytokines, they can no longer be considered as energy storage sites alone but must also be considered in metabolic control. Hence, the present review summarizes the regulatory roles of adipocytokines in diabetes linked with obesity.
    Matched MeSH terms: Adipose Tissue/physiology
  3. Zainordin NA, Eddy Warman NA, Mohamad AF, Abu Yazid FA, Ismail NH, Chen XW, et al.
    PLoS One, 2021;16(10):e0258507.
    PMID: 34644368 DOI: 10.1371/journal.pone.0258507
    INTRODUCTION: There is limited data on the effects of low carbohydrate diets on renal outcomes particularly in patients with underlying diabetic kidney disease. Therefore, this study determined the safety and effects of very low carbohydrate (VLCBD) in addition to low protein diet (LPD) on renal outcomes, anthropometric, metabolic and inflammatory parameters in patients with T2DM and underlying mild to moderate kidney disease (DKD).

    MATERIALS AND METHODS: This was an investigator-initiated, single-center, randomized, controlled, clinical trial in patients with T2DM and DKD, comparing 12-weeks of low carbohydrate diet (<20g daily intake) versus standard low protein (0.8g/kg/day) and low salt diet. Patients in the VLCBD group underwent 2-weekly monitoring including their 3-day food diaries. In addition, Dual-energy x-ray absorptiometry (DEXA) was performed to estimate body fat percentages.

    RESULTS: The study population (n = 30) had a median age of 57 years old and a BMI of 30.68kg/m2. Both groups showed similar total calorie intake, i.e. 739.33 (IQR288.48) vs 789.92 (IQR522.4) kcal, by the end of the study. The VLCBD group showed significantly lower daily carbohydrate intake 27 (IQR25) g vs 89.33 (IQR77.4) g, p<0.001, significantly higher protein intake per day 44.08 (IQR21.98) g vs 29.63 (IQR16.35) g, p<0.05 and no difference in in daily fat intake. Both groups showed no worsening of serum creatinine at study end, with consistent declines in HbA1c (1.3(1.1) vs 0.7(1.25) %) and fasting blood glucose (1.5(3.37) vs 1.3(5.7) mmol/L). The VLCBD group showed significant reductions in total daily insulin dose (39(22) vs 0 IU, p<0.001), increased LDL-C and HDL-C, decline in IL-6 levels; with contrasting results in the control group. This was associated with significant weight reduction (-4.0(3.9) vs 0.2(4.2) kg, p = <0.001) and improvements in body fat percentages. WC was significantly reduced in the VLCBD group, even after adjustments to age, HbA1c, weight and creatinine changes. Both dietary interventions were well received with no reported adverse events.

    CONCLUSION: This study demonstrated that dietary intervention of very low carbohydrate diet in patients with underlying diabetic kidney disease was safe and associated with significant improvements in glycemic control, anthropometric measurements including weight, abdominal adiposity and IL-6. Renal outcomes remained unchanged. These findings would strengthen the importance of this dietary intervention as part of the management of patients with diabetic kidney disease.

    Matched MeSH terms: Adipose Tissue/physiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links