Displaying all 13 publications

Abstract:
Sort:
  1. Teoh SL, Sapri SRB, Yusof MRBM, Yahaya MF, Das S
    J Am Assoc Lab Anim Sci, 2020 09 01;59(5):512-518.
    PMID: 32600503 DOI: 10.30802/AALAS-JAALAS-19-000167
    Recently, the zebrafish has gained in popularity as a vertebrate animal model for biomedical research. Commercial zebrafish housing systems are available and are designed to maximize stocking density of fish for a given space, but these systems are expensive and purchasing them may not be feasible for emerging laboratories with limited funding. In this article, we describe the construction of a simple and affordable recirculating zebrafish housing system. This system can be constructed in 3 working days, with materials readily available in hardware stores. The cost for construction of the system was only 3,000 MYR (750 USD). The system consists of a water reservoir, a supply line that delivers water to the shelves holding the zebrafish tanks, and a drainage line that receives water from both the supply line and the shelves containing the fish tanks and returns this water to the reservoir. This system also has a 3-stage filtration process to ensure that clean water is delivered to the zebrafish tank. The system can house up to 360 zebrafish. This low-cost housing system may make research using zebrafish feasible some laboratories.
    Matched MeSH terms: Zebrafish/physiology*
  2. Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, et al.
    PLoS One, 2014;9(4):e94227.
    PMID: 24740186 DOI: 10.1371/journal.pone.0094227
    Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.
    Matched MeSH terms: Zebrafish/physiology*
  3. Shahjahan M, Kitahashi T, Ogawa S, Parhar IS
    Gen Comp Endocrinol, 2013 Nov 1;193:79-85.
    PMID: 23899715 DOI: 10.1016/j.ygcen.2013.07.015
    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction.
    Matched MeSH terms: Zebrafish/physiology
  4. Moriya S, Tahsin N, Parhar IS
    Sci Rep, 2017 08 11;7(1):7926.
    PMID: 28801581 DOI: 10.1038/s41598-017-08248-8
    The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in kiss2 regulation. The identified, full-length sequence of a bpifcl isoform expressed in the zebrafish brain contained the BPI fold shared by BPIF family members. bpifcl mRNA expression in female zebrafish brains was significantly higher than that in males. Exposure of female zebrafish to 11-ketotestosterone decreased bpifcl and kiss2 mRNA expression. bpifcl knockdown by bpifcl-specific small interfering RNA administration to female zebrafish brain decreased kiss2 mRNA expression. bpifcl expression was widely distributed in the brain, including in the dorsal zone of the periventricular hypothalamus (Hd). Furthermore, bpifcl was also expressed in KISS2 neurons in the Hd. These results suggest that the Bpifcl modulates kiss2 mRNA expression under the influence of testosterone in the Hd of female zebrafish.
    Matched MeSH terms: Zebrafish/physiology*
  5. Lim FT, Ogawa S, Smith AI, Parhar IS
    Zebrafish, 2017 Feb;14(1):10-22.
    PMID: 27797681 DOI: 10.1089/zeb.2016.1319
    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.
    Matched MeSH terms: Zebrafish/physiology*
  6. Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC
    Fish Physiol Biochem, 2020 Aug;46(4):1349-1359.
    PMID: 32239337 DOI: 10.1007/s10695-020-00793-w
    Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
    Matched MeSH terms: Zebrafish/physiology*
  7. Ogawa S, Nathan FM, Parhar IS
    Proc Natl Acad Sci U S A, 2014 Mar 11;111(10):3841-6.
    PMID: 24567386 DOI: 10.1073/pnas.1314184111
    Kisspeptin, a neuropeptide encoded by the KISS1/Kiss1, and its cognate G protein-coupled receptor, GPR54 (kisspeptin receptor, Kiss-R), are critical for the control of reproduction in vertebrates. We have previously identified two kisspeptin genes (kiss1 and kiss2) in the zebrafish, of which kiss1 neurons are located in the habenula, which project to the median raphe. kiss2 neurons are located in the hypothalamic nucleus and send axonal projections to gonadotropin-releasing hormone neurons and regulate reproductive functions. However, the physiological significance of the Kiss1 expressed in the habenula remains unknown. Here we demonstrate the role of habenular Kiss1 in alarm substance (AS)-induced fear response in the zebrafish. We found that AS-evoked fear experience significantly reduces kiss1 and serotonin-related genes (plasmacytoma expressed transcript 1 and solute carrier family 6, member 4) in the zebrafish. Furthermore, Kiss1 administration suppressed the AS-evoked fear response. To further evaluate the role of Kiss1 in fear response, zebrafish Kiss1 peptide was conjugated to saporin (SAP) to selectively inactivate Kiss-R1-expressing neurons. The Kiss1-SAP injection significantly reduced Kiss1 immunoreactivity and c-fos mRNA in the habenula and the raphe compared with control. Furthermore, 3 d after Kiss1-SAP injection, the fish had a significantly reduced AS-evoked fear response. These findings provide an insight into the role of the habenular kisspeptin system in inhibiting fear.
    Matched MeSH terms: Zebrafish/physiology*
  8. Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, et al.
    Endocrinology, 2015 Feb;156(2):589-99.
    PMID: 25406015 DOI: 10.1210/en.2014-1204
    The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.
    Matched MeSH terms: Zebrafish/physiology*
  9. Sivalingam M, Ogawa S, Parhar IS
    Sci Rep, 2020 11 11;10(1):19569.
    PMID: 33177592 DOI: 10.1038/s41598-020-76287-9
    The habenula is an evolutionarily conserved brain structure, which has recently been implicated in fear memory. In the zebrafish, kisspeptin (Kiss1) is predominantly expressed in the habenula, which has been implicated as a modulator of fear response. Hence, in the present study, we questioned whether Kiss1 has a role in fear memory and morphine-induced fear memory impairment using an odorant cue (alarm substances, AS)-induced fear avoidance paradigm in adult zebrafish, whereby the fear-conditioned memory can be assessed by a change of basal place preference (= avoidance) of fish due to AS-induced fear experience. Subsequently, to examine the possible role of Kiss1 neurons-serotonergic pathway, kiss1 mRNA and serotonin levels were measured. AS exposure triggered fear episodes and fear-conditioned place avoidance. Morphine treatment followed by AS exposure, significantly impaired fear memory with increased time-spent in AS-paired compartment. However, fish administered with Kiss1 (10-21 mol/fish) after morphine treatment had significantly lower kiss1 mRNA levels but retained fear memory. In addition, the total brain serotonin levels were significantly increased in AS- and Kiss1-treated groups as compared to control and morphine treated group. These results suggest that habenular Kiss1 might be involved in consolidation or retrieval of fear memory through the serotonin system.
    Matched MeSH terms: Zebrafish/physiology*
  10. Loganathan K, Moriya S, Parhar IS
    Zebrafish, 2018 10;15(5):473-483.
    PMID: 30102584 DOI: 10.1089/zeb.2018.1594
    Ambient light and temperature affect reproductive function by regulating kisspeptin and gonadotrophin-releasing hormone (GnRH) in vertebrates. Melatonin and melatonin receptors, as well as the two-pore domain K+ channel-related K+ (TREK) channels, are affected by light and/or temperature; therefore, these molecules could modulate kisspeptin and GnRH against ambient light and temperature. In this study, we investigated the effect of light and temperature, which affect melatonin levels in gene expression levels of TREK channels, kisspeptin, and GnRH. We first investigated the effects of different light and temperature conditions on brain melatonin concentrations by ELISA. Fish were exposed to either constant darkness, constant light, high temperature (35°C), or low temperature (20°C) for 72 h. Brain melatonin levels were significantly high under constant darkness and high temperature. We further investigated the effects of high brain melatonin levels by constant darkness and high temperature on gene expression levels of melatonin receptors (mt1, mt2, and mel1c), TREK channels (trek1b, trek2a, and trek2b), gnrh3, and kiss2 in the adult zebrafish brain by real-time polymerase chain reaction. Fish were exposed to constant darkness or elevated temperatures (35°C) for 72 h. trek2a, kiss2, and gnrh3 levels were increased under constant darkness. High temperature decreased gene expression levels of mt1, mt2, mel1c, and gnrh3 in the preoptic area, whereas other genes remained unchanged. Melatonin receptors, TREK channels, gnrh3, and kiss2 responded differently under high melatonin conditions. The melatonin receptors and the TREK channels could play roles in the regulation of reproduction by environmental cues, especially ambient light and temperature.
    Matched MeSH terms: Zebrafish/physiology
  11. Ramlan NF, Sata NSAM, Hassan SN, Bakar NA, Ahmad S, Zulkifli SZ, et al.
    Behav Brain Res, 2017 08 14;332:40-49.
    PMID: 28559182 DOI: 10.1016/j.bbr.2017.05.048
    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system.
    Matched MeSH terms: Zebrafish/physiology
  12. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Zebrafish/physiology*
  13. Lim FT, Ogawa S, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:176-186.
    PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005
    Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
    Matched MeSH terms: Zebrafish/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links