Three different designs of heat exchanger, V-groove, honeycomb and stainless steel wool had been tested to study their effectiveness in improving the overall performance of a photovoltaic/thermal (PV/T) air base solar collector. Heat exchangers were installed horizontally into the channel located at the back side of the PV module. The system was tested at irradiance of 828 W/m2 with mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It was observed that at mass flow rate of 0.11 kg/s, the maximum thermal efficiency of the system with V-groove is 71%, stainless steel wool is 86% and honeycomb is 87%. The electrical efficiency of the systems is 7.04%, 6.88% and 7.13%, respectively. The experimental results showed that honeycomb design is the most efficient design as heat exchanger. The design which is simple and compact is suitable for building integration.
Cresol Red, a commercial dye that used widely to color nylon, wool, cotton, and polyacrylonitrile-modified nylon in the massive textile manufacture is toxic recalcitrant. Absidia spinosa M15, a novel fungal strain isolated from a tropical rain forest, was found to decolorize Cresol Red 65% within 30 d under agitation condition. UV-Vis spectroscopy, TLC analysis and mass spectra of samples after decolorization process in culture medium confirmed final decolorization of Cresol Red. Two metabolites were identified in the treated medium: benzeneacetic acid (tR 9.6 min and m/z 136) and benzoic acid (tR 5.7 min and m/z 122). Laccase showed the significant activity (133.8 U/L) in biomass obtained at the end of experiment demonstrates role of the enzyme in the decolorization process.
This paper reports the mechanical properties of cement composite boards made using wood-wool from a lesser known Malaysian timber species. A total of 108 specimens were fabricated using Portland cement (Type I) and wood-wool from Kelampayan (Neolamarckia cadamba). The cement to wood ratio of the specimens was 2 to 1 by weight. The aim of the study was to determine the density; flexural, compressive and tensile strength of wood-wool cement composite boards (WWCCB) by studying boards with wood-wool sized 1.5 mm, 2.5 mm and 3.5 mm and board thickness 25 mm, 50 mm and 75mm. The physical and mechanical properties of the boards were evaluated according to ASTM D 1037-96a (Standard testing method for evaluating properties of wood-based fibre and particle panel materials) and MS934:1986. Results showed that mechanical properties of WWCCB were greatly influenced by the density; as the density decreased, the mechanical strengths also decreased. However, the strength properties of the composite boards did not display a similar trend when subjected to different types of loading conditions. The compressive strength increased with thicker boards (50 mm and 75 mm) but the modulus of elasticity and modulus of rupture declined as the thickness of the board was increased.
Introduction: Accelerants and fabrics are commonly used to spread fire attributable to their highly flammable prop- erties. Hence, having the ability to discriminate the different types of accelerants on various types of fabrics after fire and/or arson using the non-destructive Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spec- troscopy coupled with chemometric techniques appears forensically relevant. Methods: Six types of fabrics viz. cotton, wool, silk, rayon, satin, and polyester, were burnt completely with RON95 and RON97 gasoline as well as diesel. Subsequently, the samples were analyzed by ATR-FTIR spectroscopy followed by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for discriminating the different types of accelerants on such burned fabrics. Results: RON95 showed the fastest rate of burning on all fabric types. Results also revealed that while wool had the slowest burning rate for all the three different accelerants, polyester, cotton, and satin demon- strated the highest rate of burning in RON95, RON97, and diesel, respectively. FTIR spectra revealed the presence of alkane, alcohol, alkene, alkyne, aromatic, and amine compounds for all fabrics. The two dimensional PCA (PC1 versus PC2) demonstrated 71% of variance and it was improved by cross-validation through the three dimensional LDA technique with correct classification of 77.8%. Conclusion: ATR-FTIR spectroscopy coupled with chemometric techniques had enabled identification of the functional groups, as well as statistically supported discrimination of the different accelerants, a matter of relevance in forensic fire and arson investigations.
Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.