METHODS: We searched PubMed/Medline, Web of Science, and Cochrane Library from the inception of the database to November 2022. All studies that compared LBBP with BVP in patients with HFrEF and indications for CRT were included. Two reviewers performed study selection, data abstraction, and risk of bias assessment. We calculated risk ratios (RRs) with the Mantel-Haenszel method and mean difference (MD) with inverse variance using random effect models. We assessed heterogeneity using the I2 index, with I2 > 50% indicating significant heterogeneity.
RESULTS: Ten studies (9 observational studies and 1 randomized controlled trial; 616 patients; 15 centers) published between 2020 and 2022 were included. We observed a shorter fluoroscopy time (MD: 9.68, 95% confidence interval [CI]: 4.49-14.87, I2 = 95%, p ventricular ejection fraction improvement (MD: 5.80, 95% CI: 4.81-6.78, I2 = 0%, p ventricular end-diastolic diameter reduction (MD: 2.11, 95% CI: 0.12-4.10, I2 = 18%, p = .04, millimeter). There was a greater improvement in New York Heart Association function class with LBBP (MD: 0.37, 95% CI: 0.05-0.68, I2 = 61%, p = .02). LBBP was also associated with a lower risk of a composite of heart failure hospitalizations (HFH) and all-cause mortality (RR: 0.48, 95% CI: 0.25-0.90, I2 = 0%, p = .02) driven by reduced HFH (RR: 0.39, 95% CI: 0.19-0.82, I2 = 0%, p = .01). However, all-cause mortality rates were low in both groups (1.52% vs. 1.13%) and similar (RR: 0.98, 95% CI: 0.21-4.68, I2 = 0%, p = .87).
CONCLUSION: This meta-analysis of primarily nonrandomized studies suggests that LBBP is associated with a greater improvement in left ventricular systolic function and a lower rate of HFH compared to BVP. There was uniformity of these findings in all of the included studies. However, it would be premature to conclude based solely on the current meta-analysis alone, given the limitations stated. Dedicated, well-designed, randomized controlled trials and observational studies are needed to elucidate better the comparative long-term efficacy and safety of LBBP CRT versus BIV CRT.
METHODS: Between January 2013 and June 2015, a total of 116 patients underwent arterial switch operation. Of the 116 patients, 26 with TGA-IVS underwent primary arterial switch operation at more than 30 days of age.
RESULTS: The age and body weight (mean ± SD) at the operation were 120.4 ± 93.8 days and 4.1 ±1.0 kg, respectively. There was no hospital mortality. The thickness of posterior LV wall (preoperation vs postoperation; mm) was 4.04 ± 0.71 versus 5.90 ± 1.3; P < .0001; interval: 11.8 ± 6.5 days. The left atrial pressure (mm Hg; postoperative day 0 vs 3) was 20.0 ± 3.2 versus 10.0 ± 2.0; P < .0001; and the maximum blood lactate level (mmol/dL) was 4.7 ± 1.4 versus 1.4 ± 0.3; P < .0001, which showed significant improvement in the postoperative course. All cases had delayed sternal closure. The patients who belonged to the thin LV posterior wall group (<4 mm [preoperative echo]: n = 13) had significantly longer ventilation time (days; 10.6 ± 4.8 vs 4.8 ± 1.7, P = .0039), and the intensive care unit stay (days) was 14 ± 9.2 versus 7.5 ± 3.5; P = .025, compared with thick LV wall group (≥4.0 mm: n = 13).
CONCLUSIONS: The children older than 30 days with TGA-IVS can benefit from primary arterial switch operation with acceptable results under our indication. However, we need further investigation for LV function.