Displaying all 3 publications

Abstract:
Sort:
  1. Lim LY, Vidnovic N, Ellisen LW, Leong CO
    Br. J. Cancer, 2009 Nov 3;101(9):1606-12.
    PMID: 19773755 DOI: 10.1038/sj.bjc.6605335
    p53 is the most commonly mutated tumour-suppressor gene in human cancers. Unlike other tumour-suppressor genes, most p53 cancer mutations are missense mutations within the core domain, leading to the expression of a full-length mutant p53 protein. Accumulating evidence has indicated that p53 cancer mutants not only lose tumour suppression activity but also gain new oncogenic activities to promote tumourigenesis.
    Matched MeSH terms: Tumor Suppressor Protein p53/antagonists & inhibitors
  2. Voon YL, Wong PF, Khoo ASB
    Mini Rev Med Chem, 2018;18(2):173-183.
    PMID: 28714398 DOI: 10.2174/1389557517666170717125821
    Nasopharyngeal carcinoma (NPC) is a form of head and neck cancer of multifactorial etiologies that is highly prevalent among men in the population of Southern China and Southeast Asia. NPC has claimed many thousands of lives worldwide; but the low awareness of NPC remains a hindrance in early diagnosis and prevention of the disease. NPC is highly responsive to radiotherapy and chemotherapy, but radiocurable NPC is still dependent on concurrent treatment of megavoltage radiotherapy with chemotherapy. Despite a significant reduction in loco-regional and distant metastases, radiotherapy alone has failed to provide a significant improvement in the overall survival rate of NPC, compared to chemotherapy. In addition, chemo-resistance persists as the major challenge in the management of metastatic NPC although the survival rate of advanced metastatic NPC has significantly improved with the administration of chemotherapy adjunctive to radiotherapy. In this regard, targeted molecular therapy could be explored for the discovery of alternative NPC therapies. Nutlin-3, a small molecule inhibitor that specifically targets p53-Mdm2 interaction offers new therapeutic opportunities by enhancing cancer cell growth arrest and apoptosis through the restoration of the p53-mediated tumor suppression pathway while producing minimal cytotoxicity and side effects. This review discusses the potential use of Nutlin-3 as a p53-activating drug and the future directions of its clinical research for NPC treatment.
    Matched MeSH terms: Tumor Suppressor Protein p53/antagonists & inhibitors*
  3. Malami I, Abdul AB, Abdullah R, Kassim NK, Rosli R, Yeap SK, et al.
    PLoS One, 2017;12(1):e0170233.
    PMID: 28103302 DOI: 10.1371/journal.pone.0170233
    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.
    Matched MeSH terms: Tumor Suppressor Protein p53/antagonists & inhibitors
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links