Displaying all 2 publications

Abstract:
Sort:
  1. Abdalla LF, Chaudhry Ehsanullah R, Karim F, Oyewande AA, Khan S
    Cureus, 2020 May 22;12(5):e8240.
    PMID: 32582499 DOI: 10.7759/cureus.8240
    The process of inflammation occurs due to inflammatory mediators, including prostaglandins, cytokines, and tumor necrosis factor (TNF). All these mediators activate the process of tumorigenesis and dysplasia, leading to colitis-associated cancer. Several drugs used to decrease these mediators will help in the treatment of acute attacks and also help in prolonged remissions of the disease by using nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, and biological factors. Reducing these inflammatory mediators also have a role in chemoprevention and prevent progression to colorectal carcinoma. The most researched drugs in this process of chemoprevention are NSAIDs as it has both cyclooxygenase-2 (COX-2) inhibitory and non-inhibitory effects. These drugs should be taken for a long time and in large doses to reach this effect, which puts the patient at risk for various side effects. Researchers will need to do more research in the future to find the lowest effective dose that can reach the chemopreventive effect. We used database Pubmed as the main source for data search and extracted articles exploring the relationship between NSAIDs and their role in chemoprevention of colorectal carcinoma in inflammatory bowel disease (IBD) patients. We chose 23 studies which included seven review articles. We found that inflammatory mediators have a key role in colitis-associated cancer.
    Matched MeSH terms: Tumor Necrosis Factors
  2. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

    Matched MeSH terms: Tumor Necrosis Factors
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links