Displaying all 12 publications

Abstract:
Sort:
  1. Ahmad S, Azid NA, Boer JC, Lim J, Chen X, Plebanski M, et al.
    Front Immunol, 2018;9:2572.
    PMID: 30473698 DOI: 10.3389/fimmu.2018.02572
    Tumor necrosis factor-alpha (TNF) is a pleiotropic cytokine, which is thought to play a major role in the pathogenesis of inflammatory diseases, including allergy. TNF is produced at the early stage of allergen sensitization, and then continues to promote the inflammation cascade in the effector phase of allergic reactions. Consequently, anti-TNF treatment has been proposed as a potential therapeutic option. However, recent studies reveal anti-intuitive effects of TNF in the activation and proliferative expansion of immunosuppressive Tregs, tolerogenic DCs and MDSCs. This immunosuppressive effect of TNF is mediated by TNFR2, which is preferentially expressed by immunosuppressive cells. These findings redefine the role of TNF in allergic reaction, and suggest that targeting TNF-TNFR2 interaction itself may represent a novel strategy in the treatment of allergy.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology*
  2. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    Br J Biomed Sci, 2006;63(4):176-8.
    PMID: 17201208
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  3. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  4. Tan YF, Sim GC, Habsah A, Leong CF, Cheong SK
    Malays J Pathol, 2008 Dec;30(2):73-9.
    PMID: 19291915 MyJurnal
    Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  5. Bhatia M, Landolfi C, Basta F, Bovi G, Ramnath RD, de Joannon AC, et al.
    Inflamm Res, 2008 Oct;57(10):464-71.
    PMID: 18827968 DOI: 10.1007/s00011-008-7210-y
    Chemokines play a fundamental role in trafficking and activation of leukocytes in colonic inflammation. We investigated the ability of bindarit, an inhibitor of monocyte chemoattractant protein-1 (MCP-1/CCL2) synthesis, to inhibit chemokine production by human intestinal epithelial cells (HT-29) and its effect in trinitro-benzene sulfonic acid (TNBS)-induced colitis in mice.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  6. Vavricka SR, Gubler M, Gantenbein C, Spoerri M, Froehlich F, Seibold F, et al.
    Inflamm Bowel Dis, 2017 07;23(7):1174-1181.
    PMID: 28452862 DOI: 10.1097/MIB.0000000000001109
    BACKGROUND: Extraintestinal manifestations (EIMs) in patients with inflammatory bowel disease (IBD) are frequently observed. Little is known about the efficacy of anti-tumor necrosis factor (TNF) in EIM management. We assessed the effect of 3 anti-TNF agents (infliximab, adalimumab, and certolizumab pegol) on EIM evolution.

    METHODS: Data on 1249 patients from the Swiss IBD Cohort Study (SIBDCS) were analyzed. All EIMs were diagnosed by relevant specialists. Response was classified into improvement, stable disease, and clinical worsening based on the physician's interpretation.

    RESULTS: Of the 366 patients with at least 1 EIM, 213 (58.2%) were ever treated with an anti-TNF. A total of 299 treatments were started for 355 EIMs. Patients with EIM were significantly more often treated with anti-TNF compared with those without EIM (58.2% versus 21.0%, P < 0.001). Infliximab was the most frequently used drug (63.2%). In more than 71.8%, a clinical response of the underlying EIM to anti-TNF therapy was observed. In 92 patients (43.2%), anti-TNF treatments were started for the purpose of treating EIM rather than IBD. Response rates to anti-TNF were generally good and best for psoriasis, aphthous stomatitis, uveitis, and peripheral arthritis. In 11 patients, 14 EIM occurred under anti-TNF treatment.

    CONCLUSIONS: Anti-TNF was frequently used among patients with EIM. In more than 40%, anti-TNF treatments are started to treat EIM rather than IBD. Given the good response rates, anti-TNF seems to be a valuable option in the treatment of EIM, whereas appearance of EIM under anti-TNF does not seem to be a source of considerable concern.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology*
  7. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  8. Tan JW, Wan Zahidi NF, Kow ASF, Soo KM, Shaari K, Israf DA, et al.
    Biosci Rep, 2019 06 28;39(6).
    PMID: 31110077 DOI: 10.1042/BSR20181273
    Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  9. Park DI, Hisamatsu T, Chen M, Ng SC, Ooi CJ, Wei SC, et al.
    J Gastroenterol Hepatol, 2018 Jan;33(1):20-29.
    PMID: 29023903 DOI: 10.1111/jgh.14019
    Because anti-tumor necrosis factor (anti-TNF) therapy has become increasingly popular in many Asian countries, the risk of developing active tuberculosis (TB) among anti-TNF users may raise serious health problems in this region. Thus, the Asian Organization for Crohn's and Colitis and the Asian Pacific Association of Gastroenterology have developed a set of consensus statements about risk assessment, detection, and prevention of latent TB infection and management of active TB infection in patients with inflammatory bowel disease (IBD) receiving anti-TNF treatment. Twenty-three consensus statements were initially drafted and then discussed by the committee members. The quality of evidence and the strength of recommendations were assessed by using the Grading of Recommendations Assessment, Development, and Evaluation methodology. Web-based consensus voting was performed by 211 IBD specialists from nine Asian countries concerning each statement. A consensus statement was accepted if at least 75% of the participants agreed. Part 1 of the statements comprised two parts: (i) risk of TB infection during anti-TNF therapy and (ii) screening for TB infection prior to commencing anti-TNF therapy. These consensus statements will help clinicians optimize patient outcomes by reducing the morbidity and mortality related to TB infections in patients with IBD receiving anti-TNF treatment.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  10. Abu Bakar MH, Hairunisa N, Zaman Huri H
    Clin Exp Med, 2018 Aug;18(3):373-382.
    PMID: 29550985 DOI: 10.1007/s10238-018-0495-4
    Altered mitochondrial DNA (mtDNA) is the most common denominator to numerous metabolic diseases. The present study sought to investigate the correlation between mtDNA content in lymphocytes and associated clinical risk factors for impaired fasting glucose (IFG). We included 23 healthy control and 42 IFG participants in this cross-sectional study. The measurements of mtDNA content in lymphocytes and pro-inflammatory markers derived from both normal and diseased individuals were quantified. Spearman partial correlation and multivariate statistical analyses were employed to evaluate the association between mtDNA content and other metabolic covariates in IFG. Reduced mtDNA content was observed in the IFG group with microvascular complications than those without complications. The IFG patients with lowest median of mtDNA content had considerably elevated hyperglycemia, insulin resistance and inflammation. The adjusted partial correlation analysis showed that mtDNA content was positively correlated with HDL-cholesterol and IL-10 (P factors. Our data show that reduced mtDNA content in lymphocytes was associated with insulin resistance and inflammation in individuals with IFG.
    Study site: Outpatient clinics, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  11. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
  12. Shankar EM, Che KF, Yong YK, Girija ASS, Velu V, Ansari AW, et al.
    Pathog Dis, 2021 Jan 09;79(1).
    PMID: 33289808 DOI: 10.1093/femspd/ftaa076
    A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links